OMRON

E3NW-ECT

EtherCAT_® **Digital Sensor Communication Unit**

Operation Manual

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

- Trademarks —

- EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
- ODVA, CIP, CompoNet, DeviceNet, and EtherNet/IP are trademarks of ODVA.
- Microsoft, Windows, Windows Vista, Excel, and Visual Basic are either registered trademarks or trademarks of Microsoft Corporation in the United States and other countries.
- Sysmac and SYSMAC are trademarks or registered trademarks of OMRON Corporation in Japan and other countries for OMRON factory automation products.

Other company names and product names in this document are the trademarks or registered trademarks of their respective companies.

E3NW-ECT EtherCAT Digital Sensor Communication Unit

Operation Manual

Introduction

Thank you for purchasing a E3NW-ECT EtherCAT Digital Sensor Communication Unit.

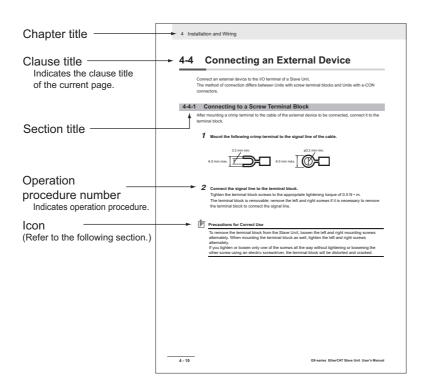
This manual contains information you need to know to use the E3NW-ECT.

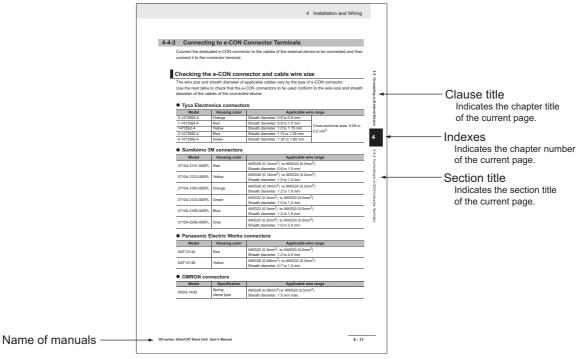
Before use, please make sure that you thoroughly read the manual and have a full understanding of the products functions and performance.

After you finished reading this manual, please keep it in a convenient place.

Intended Readers

This manual is intended for the following individuals.


Those having electrical knowledge (certified electricians or individuals having equivalent knowledge) and also being qualified for one of the following:


- · Introducing FA equipment
- · Designing FA systems
- · Managing FA sites

How to Read the Manual

Page Structure

This manual's page structure consists of the following.

Icon

The meanings of the icons used in this manual are as follows.

Precautions for Safe Use

Indicates precautions on what to do and what not to do to ensure using the product safely.

Precautions for Correct Use

Indicates precautions on what to do and what not to do to ensure proper operation and performance.

Reference

This explains useful tips and reference information when using the product.

Structure of This Manual

This manual consists of the following chapters.

Chapters		Contents
Chapter 1	EtherCAT Network	Explains about the EtherCAT features and the network configuration.
Chapter 2	EtherCAT Sensor Communication Unit	Overviews the E3NW-ECT EtherCAT Sensor Communication Unit and its various types.
Chapter 3	Basic Usage Procedures	Explains the setup method and usage procedures by using simple system setup examples.
Chapter 4	Installation and Wiring	Explains how to install Slave Units, and how to connect and wire the EtherCAT network and power supply.
Chapter 5	EtherCAT Communications	Explains the details of EtherCAT communications.
Chapter 6 E3NW-ECT Hardware specifications		Explains the E3NW-ECT Hardware specifications.
Chapter 7 E3NW-ECT Functional specifications		Explains the E3NW-ECT Functional specifications.
Chapter 8	Troubleshooting and Maintenance	This contains troubleshooting and inspection methods intended for individuals to handle abnormalities and conduct regular inspections.
Appendices	Appendices	The appendices give an overview of the objects and precautions on their use, and describes the specifications of the E3NW-DS Distributed Sensor Unit.

Terms and Conditions Agreement

Warranty, Limitations of Liability

Warranties

Exclusive Warranty

Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.

Limitations

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.

Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right.

Buyer Remedy

Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty.

Limitation on Liability; Etc

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.

Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

Application Considerations

Suitability of Use

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.

NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products

Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

Disclaimers

Performance Data

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

Errors and Omissions

Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

Safety Precautions

Labels and Meanings to Ensure Safe Usage

To ensure safe usage of the EtherCAT Slave Unit, the precautions in this manual are displayed with the following labels and symbols.

The precautions explained in this section describe important information regarding safety. These precautions must be followed without fail.

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
Additionally, there may be severe property damage.

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury, or property damage.

Symbols

 \bigcirc This symbol indicates a prohibited item (an item you must not do).

The specific instruction is indicated using text inside the \bigcirc . The symbol shown to the left indicates "disassembly prohibited".

This symbol indicates caution (warnings included).

The specific instruction is indicated using text inside the \triangle . The symbol shown to the left indicates "typical cautions".

This symbol means it is a compulsory item (an item that must be done).

The specific instruction is indicated using text inside the The symbol shown to the left indicates "typical compulsory items".

MARNING

Do not attempt to take any Unit apart and do not touch the interior of any Unit while the power is being supplied. Also, do not turn ON the power supply while the cover is open.

Doing any of these may result in electric shock.

Do not attempt to disassemble, repair, or modify any Units. Doing any of these may result in electric shock.

Do not input voltages or currents exceeding the rated range to the Unit.
Using voltages or currents exceeding the rated range may cause Unit failure or fire.

Provide safety measures in external circuits (i.e., not in the Units), including the following items, to ensure safety in the system if an abnormality occurs due to malfunction of the PLC or another external factor affecting the PLC operation. ("PLC" includes CPU Units, other Units mounted in the PLC, and Remote I/O Terminals.)

Not doing so may result in serious accidents.

Emergency stop circuits, interlock circuits, limit circuits, and similar safety measures must be provided in external control circuits, not in the Units.

The PLC will turn OFF all outputs when its self-diagnosis function detects any error or when a severe failure alarm (FALS) instruction is executed. As a countermeasure for such problems, external safety measures must be provided to ensure safety in the system.

The Slave Unit outputs may remain ON or OFF due to deposits on or burning of the output relays, or destruction of the output transistors. As a countermeasure for such problems, external safety measures must be provided to ensure safety in the system.

When the 24-VDC output (service power supply to the PLC) is overloaded or short-circuited, the voltage may drop and result in the outputs being turned OFF. As a countermeasure for such problems, external safety measures must be provided to ensure safety in the system.

Implement proper measures as part of your communications system or in your program to ensure safety in the system even when a communications error or malfunction occurs during remote I/O communication.

The CPU Unit refreshes I/O even when the program is stopped (i.e., even in PROGRAM mode). Confirm safety thoroughly in advance before changing the status of any part of memory allocated to I/O Units, Special I/O Units, or CPU Bus Units. Any changes to the data allocated to any Unit specifically the Special I/O Units/CPU Bus Units may result in unexpected operation of the loads connected to the Unit.

- Transferring I/O memory data to the CPU Unit with a Programming Device (PC tool).
- Changing present values in memory with a Programming Device.
- Force-setting/-resetting bits with a Programming Device.
- Transferring I/O memory files from a memory card or EM file memory to the CPU Unit.
- Transferring I/O memory from a host computer or from another PLC on a network.

Fail-safe measures must be taken by the customer to ensure safety in the event of incorrect, missing, or abnormal signals caused by broken signal lines, momentary power interruptions, or other causes. Not doing so may result in serious accidents.

Security Measures

Anti-virus protection

Install the latest commercial-quality antivirus software on the computer connected to the control system and maintain to keep the software up-to-date.

Security measures to prevent unauthorized access

Take the following measures to prevent unauthorized access to our products.

- Install physical controls so that only authorized personnel can access control systems and equipment.
- Reduce connections to control systems and equipment via networks to prevent access from untrusted devices.
- Install firewalls to shut down unused communications ports and limit communications hosts and isolate control systems and equipment from the IT network.
- Use a virtual private network (VPN) for remote access to control systems and equipment.
- Adopt multifactor authentication to devices with remote access to control systems and equipment.
- Set strong passwords and change them frequently.
- Scan virus to ensure safety of USB drives or other external storages before connecting them to control systems and equipment.

Data input and output protection

Validate backups and ranges to cope with unintentional modification of input/output data to control systems and equipment.

- · Checking the scope of data
- Checking validity of backups and preparing data for restore in case of falsification and abnormalities
- Safety design, such as emergency shutdown and fail-soft operation in case of data tampering and abnormalities

Data recovery

Backup data and keep the data up-to-date periodically to prepare for data loss.

When using an intranet environment through a global address, connecting to an unauthorized terminal such as a SCADA, HMI or to an unauthorized server may result in network security issues such as spoofing and tampering.

You must take sufficient measures such as restricting access to the terminal, using a terminal equipped with a secure function, and locking the installation area by yourself.

When constructing an intranet, communication failure may occur due to cable disconnection or the influence of unauthorized network equipment. Take adequate measures, such as restricting physical access to network devices, by means such as locking the installation area.

When using a device equipped with the SD Memory Card function, there is a security risk that a third party may acquire, alter, or replace the files and data in the removable media by removing the removable media or unmounting the removable media. Please take sufficient measures, such as restricting physical access to the Controller or taking appropriate management measures for removable media, by means of locking the installation area, entrance management, etc., by yourself.

Precautions for Safe Use

Observe the following precautions when using the Unit.

Power Supply

- Always use the power supply voltage specified in this manual. An incorrect voltage may result in malfunction or burning.
- Take appropriate measures to ensure that the specified power with the rated voltage and frequency is supplied. Be particularly careful in places where the power supply is unstable. An incorrect power supply may result in malfunction.
- Always turn OFF the power supply to the PLC, Slave Units and other Units before attempting any of the following. Not turning OFF the power supply may result in malfunction or electric shock.
 - Assembling any Units (Expansion Units).
 - · Removing or attaching the terminal blocks or connectors to Slave Unit.
 - Replacing parts (e.g., relays).
 - · Setting the DIP switch or the node address switches
 - · Connecting cables or wiring the system.

Installation

- Before touching a Unit, be sure to first touch a grounded metallic object in order to discharge any static build-up. Not doing so may result in malfunction or damage.
- Make sure that the terminal blocks, communications cables, and other items with locking devices are properly locked into place. Improver locking may result in malfunction.
- · Mount the Units securely using DIN track.
- Make sure that all Slave Unit mounting screws and cable connector screws are tightened to the torque specified in this manual. Incorrect tightening torque may result in malfunction.
- Make sure that all terminal block screws are tightened to the torque specified in this manuals. Incorrect tightening torque may result in fire, malfunction, or failure.
- Always use the specified communications cables and connectors.
- Do not extend connection distances or the number of connected nodes beyond the ranges given in the specifications.
- When there are multiple systems, keep the cables unbundled and separated by at least 5 mm to prevent unstable operation due to interference.

Wiring

- Turn the power on after checking that the wiring and switch settings are correct.
- · Use the correct wire tools to wire the Unit.
- Confirm the polarity of all terminals before wiring them.
- Do not allow foreign matter to enter the Units when wiring and installing the Units.
- Observe the following precautions when wiring the communications cable.
 - Separate the communications cables from the power lines or high-tension lines.
 - Do not bend the communications cables past their natural bending radius.
 - Do not pull on the communications cables.
 - Do not place heavy objects on top of the communications cables.
 - · Always lay communications cable inside ducts.
- Turn OFF the power of PLC and all the Slave Units before wiring the communication cables.
- Do not apply voltages to the Input Slave Units in excess of the rated input voltage. Excess voltage
 or loads may result in burning.

• Do not apply voltages or connect loads to the Outputs Slave Units in excess of the maximum switching capacity. Excess voltage or loads may result in burning.

Handling

- When transporting the product, use special packing boxes, and protect it from being exposed to excessive vibration or impact during transportation.
- Do not bend cables past their natural bending radius or pull on cables.
- After replacing Units, resume operation only after transferring to the new CPU Unit and/or Special I/O Units the contents of the DM Area, HR Area, and other data required for resuming operation.
 Not doing so may result in unexpected operation.
- Check the user program for proper execution before actually running it on the Unit. Not checking the program may result in unexpected operation.
- When replacing relays or other parts, be sure to confirm that the ratings of the new part are correct. Not doing so may result in malfunction or burning.
- · Confirm that no adverse effect will occur in the system before attempting any of the following.
 - Changing the operating mode of the PLC.
 - Setting/resetting any bit in memory.
 - Changing the present value of any word or any set value in memory.
- Do not use thinner when cleaning. Use commercially available alcohol.

External Circuits

Install external breakers and take other safety measures against short-circuiting in external wiring.

Applicable standards

- EN61326-1
- Electromagnetic environment : Industrial electromagnetic environment (EN/IEC 61326-1 Table 2)

Precautions for Correct Use

- Wire all connections correctly according to instructions in this manual.
 Failure to install them may result in serious accidents.
- Do not operate the control system in the following locations:
 - · Location subject to direct sunlight.
 - · Locations subject to temperatures or humidity outside the range specified in the specifications.
 - Locations subject to condensation as the result of severe changes in temperature.
 - · Location subject to corrosive or flammable gases.
 - · Location subject to dust (especially iron dust) or salts.
 - Location subject to exposure to water, acid, oil, chemicals, etc.
 - · Locations subject to shock or vibration.
- Always use the DIN Track End Plates that are provided, and make sure that the Unit is mounted securely to the DIN Track.
- Confirm voltage specifications when wiring communications, the power supply, and I/O crossovers. Incorrect wire may result in malfunction.
- · Wire all connections correctly according to instructions in this manual.
- · Use the correct wiring materials to wire the Unit.
- Take appropriate and sufficient countermeasures when installing systems in the following locations:
 - · Locations subject to static electricity or other forms of noise.
 - · Locations subject to strong electromagnetic fields.
 - · Locations subject to possible exposure to radioactivity.
 - · Locations close to power supplies.
- Do not drop any Unit or subject any Unit to excessive shock or vibration. Otherwise, Unit failure or malfunction may occur.

Conformance to EC Directives

Applicable Directives

EMC Directives

Concepts

EMC Directives

The OMRON products described in this manual are designed so that they individually comply with the related EMC Directives so that they can be more easily built into other devices or the overall machine. The actual products have been checked for conformity to EMC Directives (See note)*. Whether the products conform to the standards in the system used by the customer, however, cannot be checked by OMRON and must be checked by the customer. EMC-related performance of the OMRON devices that comply with EC Directives will vary depending on the configuration, wiring, and other conditions of the equipment or control panel on which the OMRON devices are installed. The customer must, therefore, perform the final check to confirm that devices and the overall machine conform to EMC standards.

* Note: Applicable EMC (Electromagnetic Compatibility) standards are as follows: EMS (Electromagnetic Susceptibility): EN 61326-1 EMI (Electromagnetic Interference): EN 61326-1

Conformance to EC Directives

The OMRON products described in this manual comply with the related EMC Directives. To ensure that the machine or device in which the products are used complies with EC Directives, the products must be installed as follows:

- The products must be installed within a control panel.
- A DC power supply with reinforced insulation or double insulation that can maintain a stable output even if the input is interrupted for 10 ms must be used for communications power, internal power, and I/O power. The OMRON S8JX-series Power Supply is recommended. (See note.)*
- Products complying with EC Directives also conform to the Emission Standards (EN 61326-1).
 Radiated emission characteristics (10-m regulations) may vary depending on the configuration of the control panel used, other devices connected to the control panel, wiring, and other conditions. You must therefore confirm that the overall machine or equipment complies with EC Directives.
- Conformance with the EC Directives was confirmed with a system configuration using I/O wiring lengths of less than 30 m.

^{*} Note: Conformance with the EMC Directive was confirmed when using the recommended power supply.

Related Manuals

The following manuals also deal with EtherCAT. Refer to them for details.

## CJ Series Explains the setup and operation procedures of the EtherCAT Position Control Units (CJ1W-NCx81/x82) which functions as a master. ### W446 CX-Programmer	Man No.	Name of manuals	Contents
W446 CX-Programmer Operation Manual CX-Programmer Operation Manual Explains the operations method of the Windows-based programming tool CX-Programmer. Explains the overall NJ-series System and the following items for the NJ501 CPU Units. Features and system configuration Overview Part names and functions General specifications Installation and wiring Maintenance and inspection Use this manual together with the NJ-series CPU Units. CPU Unit operation CPU Unit functions Initial settings Languages and programming based on IEC 61131-3. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the overall NJ-series CPU Units. CPU Unit operation CPU Unit functions Initial settings Languages and programming based on IEC 61131-3. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the overall NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the operating procedures of the Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio		CJ Series	<u> </u>
W300 CX-Programmer Operation Manual Explains the operations method of the Windows-based programming tool CX-Programmer. Explains the overall NJ-series System and the following items for the NJ501 CPU Units. Features and system configuration Overview Part names and functions General specifications Installation and wiring Maintenance and inspection Use this manual together with the NJ-series CPU Units. CPU Unit operation CPU Unit functions Initial settings Languages and programming based on IEC 61131-3. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the following items for NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the built-in EtherCAT Port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the overall procedures of the Sysmac Studio Version 1 Explains the overall procedures of the Sysmac Studio Version 1	W487		EtherCAT Position Control Units (CJ1W-NCx81/x82) which
W500 Operation Manual programming tool CX-Programmer. Explains the overall NJ-series System and the following items for the NJ501 CPU Units. Features and system configuration Overview Part names and functions General specifications Installation and wiring Maintenance and inspection Use this manual together with the NJ-series CPU Unit Software User's Manual W501 NJ/NX-series CPU Unit Software User's Manual NJ/NX-series CPU Unit Software User's Manual NJ/NX-series CPU Unit Software User's Manual (Cat. No. W501). Explains the following items for NJ-series CPU Units. CPU Unit unctions Initial settings Languages and programming based on IEC 61131-3. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the overall NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501).		Operation Manual	functions as a master.
W500 Poperation Manual programming tool CX-Programmer. Explains the overall NJ-series System and the following items for the NJ501 CPU Units. Features and system configuration Overview Part names and functions General specifications Installation and wiring Maintenance and inspection Use this manual together with the NJ-series CPU Units Software User's Manual (Cat. No. W501). Explains the following items for NJ-series CPU Units. CPU Unit operation CPU Unit functions Initial settings Languages and programming based on IEC 61131-3. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) an	W446	_	
W500 NJ-series CPU Unit Hardware User's Manual NJ-series CPU Unit Hardware User's Manual NJ-series CPU Unit Hardware User's Manual NJ/NX-series CPU Unit Software User's Manual NJ/NX-series CPU Unit Built-in Hardware User's Manual (Cat. No. W500). Explains the following items for NJ-series CPU Units. CPU Unit operation CPU Unit functions Initial settings Initial settings Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the NJ-series CPU Unit Hardware User's Manual (Cat. No. W501) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W501). Sysmac Studio Version 1 Items for the NJ-series and system configuration Part names and functions General specifications General specifications Bart names and functions General specifications Installation and wiring Manual Explains the following items for NJ-series CPU Units Explains the following items for NJ-series CPU Units Explains the following items for NJ-series CPU Unit Hardware User's Manual (Cat. No. W501). Explains the operating procedures of the Sysmac Studio Explains the operating procedures of the Sysmac Studio		Operation Manual	
W500 NJ-series CPU Unit Hardware User's Manual NJ-series CPU Unit Hardware User's Manual NJ/NX-series CPU Unit Software User's Manual NJ/NX-series CPU Unit Built-in EtherCAT ® Port User's Manual NJ/NX-series CPU Unit Built-in EtherCAT ® NJ/NX-series CPU Unit Software User's Manual NJ/NX-series CPU Unit Built-in EtherCAT ® Port User's Manual NJ/NX-series CPU Unit Built-in EtherCAT ® Port User's Manual NJ/NX-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) Explains the detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio			Explains the overall NJ-series System and the following
W500 W500 NJ-series CPU Unit Hardware User's Manual NJ/NX-series CPU Unit Software User's Manual NJ/NX-series CPU Unit Software User's Manual (Cat. No. W501). Explains the following items for NJ-series CPU Units. CPU Unit functions Initial settings Languages and programming based on IEC 61131-3. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the built-in EtherCAT Port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500). Explains the duilt-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500). Explains error management concepts and the individual errors that are detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500). Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio.			
W500 NJ-series CPU Unit Hardware User's Manual Part names and functions General specifications Installation and wiring Maintenance and inspection Use this manual together with the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the following items for NJ-series CPU Units. CPU Unit operation CPU Unit functions Initial settings Languages and programming based on IEC 61131-3. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the operating procedures of the Sysmac Studio (Cat. No. W501).			Features and system configuration
User's Manual • General specifications • Installation and wiring • Maintenance and inspection Use this manual together with the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the following items for NJ-series CPU Units. • CPU Unit operation • CPU Unit functions • Initial settings • Languages and programming based on IEC 61131-3. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the operating procedures of the Sysmac Studio Pythanual (Cat. No. W501).			
User's Manual General specifications Installation and wiring Maintenance and inspection Use this manual together with the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the following items for NJ-series CPU Units. CPU Unit operation CPU Unit operation CPU Unit functions Initial settings Languages and programming based on IEC 61131-3. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500). Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio	W500		
W501 W501 NJ/NX-series CPU Unit Software User's Manual (Cat. No. W501). Explains the following items for NJ-series CPU Units. CPU Unit operation CPU Unit functions Initial settings Languages and programming based on IEC 61131-3. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501).	***************************************	User's Manual	· •
Use this manual together with the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the following items for NJ-series CPU Units. • CPU Unit operation • CPU Unit functions • Initial settings • Languages and programming based on IEC 61131-3. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the following items for NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the operating procedures of the Sysmac Studio Pyplains the Operating Pyplains			<u> </u>
W501 NJ/NX-series CPU Unit Software User's Manual NJ/NX-series CPU Unit Built-in EtherCAT ® Port User's Manual NJ/NX-series CPU Unit Built-in EtherCAT ® Port User's Manual NJ/NX-series CPU Unit Built-in EtherCAT ® Port User's Manual NJ/NX-series CPU Unit Built-in EtherCAT ® Port User's Manual NJ/NX-series CPU Unit Built-in EtherCAT ® Port User's Manual NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500). Explains the operating procedures of the Sysmac Studio.			<u> </u>
W501 NJ/NX-series CPU Unit Software User's Manual NJ/NX-series CPU Unit Software User's Manual NJ/NX-series CPU Unit Software User's Manual (Cat. No. W500). Explains the following items for NJ-series CPU Units. PU Unit functions Initial settings Languages and programming based on IEC 61131-3. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio.			T
W501 NJ/NX-series CPU Unit Software User's Manual NJ/NX-series CPU Unit Software User's Manual NJ/NX-series CPU Unit Built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). W503 NJ/NX-series Troubleshooting Manual NJ/NX-series Troubleshooting Manual NJ/NX-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501).			, ,
W501 NJ/NX-series CPU Unit Software User's Manual NJ/NX-series CPU Unit Software User's Manual NJ/NX-series CPU Unit Built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). W503 NJ/NX-series Troubleshooting Manual NJ/NX-series Troubleshooting Manual Sysmac Studio Version 1 Pyplains the operating procedures of the Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio			, ,
W501 NJ/NX-series CPU Unit Software User's Manual Initial settings Languages and programming based on IEC 61131-3. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). W503 NJ/NX-series Troubleshooting Manual NJ/NX-series Troubleshooting Manual Sysmac Studio Version 1 Sysmac Studio Version 1 Fyplains the operating procedures of the Sysmac Studio Version 1 Fyplains the operating procedures of the Sysmac Studio Version 1			•
User's Manual			
Use this manual together with the <i>NJ-series CPU Unit Hardware User's Manual</i> (Cat. No. W500). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the <i>NJ-series CPU Unit Hardware User's Manual</i> (Cat. No. W500) and the <i>NJ-series CPU Unit Software User's Manual</i> (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the <i>NJ-series CPU Unit Hardware User's Manual</i> (Cat. No. W501). W503 NJ/NX-series Troubleshooting Manual NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the <i>NJ-series CPU Unit Software User's Manual</i> (Cat. No. W501).	W501		
W505 Hardware User's Manual (Cat. No. W500). Explains the built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). W504 Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio			
W505 W505 NJ/NX-series CPU Unit Built-in EtherCAT port. An overview is provided and the configuration, functions, and setup are described. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500). Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio.			_
W505 NJ/NX-series CPU Unit Built-in EtherCAT® Port User's Manual NJ/NX-series CPU Unit Built-in EtherCAT® Port User's Manual NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500). Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio.			1
W505 NJ/NX-series CPU Unit Built-in EtherCAT® Port User's Manual W505 NJ/NX-series CPU Unit Built-in Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500). W504 Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio.			· ·
W505 EtherCAT® Port User's Manual Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio			
W503 Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio	MEGE		•
W503 NJ-series CPU Unit Software User's Manual (Cat. No. W501). Explains error management concepts and the individual errors that are detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). W504 Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio	VVOUO		_
W501). Explains error management concepts and the individual errors that are detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). W504 Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio			
W503 Explains error management concepts and the individual errors that are detected by the NJ-series System. Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio			,
W503 NJ/NX-series Troubleshooting Manual NJ/NX-series Troubleshooting Manual NJ/NX-series Troubleshooting Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio			,
W503 NJ/NX-series Troubleshooting Manual Use this manual together with the NJ-series CPU Unit Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio			
Manual Hardware User's Manual (Cat. No. W500) and the NJ-series CPU Unit Software User's Manual (Cat. No. W501). Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio		N I/NX-series Troubleshooting	1
NJ-series CPU Unit Software User's Manual (Cat. No. W501). W504 Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio	W503	_	_
W501). Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio		Waltdal	· · · · · · · · · · · · · · · · · · ·
Sysmac Studio Version 1 Explains the operating procedures of the Sysmac Studio			· ·
While I remained the operating procedures of the Sysmac Studio		Sysmac Studio Version 1	
	W504	Operation Manual	Explains the operating procedures of the Sysmac Studio.

EtherCAT Network

This chapter explains the overview of EtherCAT network.

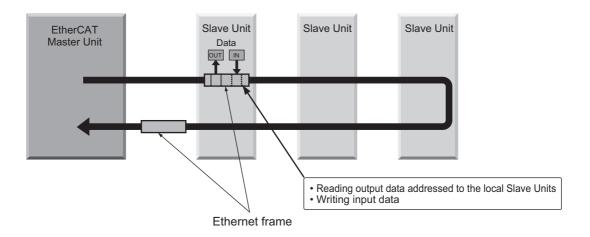
1-1	Overv	riew of EtherCAT Networks	1-2
	1-1-1	Features of EtherCAT	1-2
	1-1-2	Structure of EtherCAT	1-2
	1-1-3	Communications types of EtherCAT	1-4
	1-1-4	Connection Examples of EtherCAT	1-5
1-2	Confi	guration Elements of EtherCAT Network	1-6
	1-2-1	Configuration Devices of EtherCAT Network	1-6
	1-2-2	Overview of Configuration Devices	1-7

Overview of EtherCAT Networks

Features of EtherCAT 1-1-1

EtherCAT (Ethernet Control Automation Technology) is a high-performance industrial network system based on Ethernet system and can realize faster and more efficient communications.

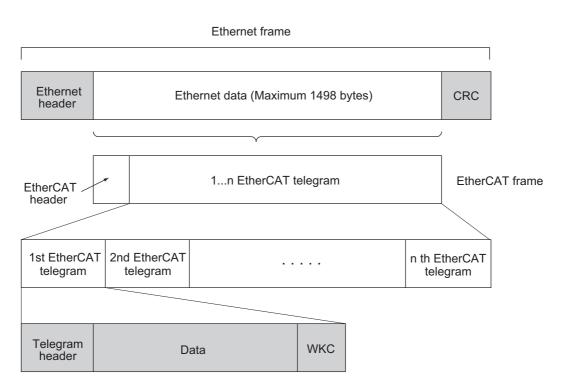
Each node achieves a short communications cycle time by transmitting Ethernet frames at high speed. Furthermore, even though EtherCAT is a unique protocol, it offers excellent general-purpose applicability. For example, you can use Ethernet cables because EtherCAT utilizes standard Ethernet technology for the physical layer. And the effectiveness of EtherCAT can be fully utilized not only in large control systems that require high processing speeds and system integrity, but also in small and medium control systems.


1-1-2 Structure of EtherCAT

EtherCAT does not send data to individual slave nodes on the network, instead, it passes Ethernet frames through all of the slave nodes.

When frame passes through a slave node, the slave node reads and writes data in the areas allocated to it in the frames in a few nanoseconds.

Ethernet frames sent from the EtherCAT Master Unit go through all the EtherCAT Sensor Communication Units without stopping on the way. Once they reach the final Slave Unit, they are sent back from the final Slave Unit, pass through all Slave Units again, and return to the EtherCAT Master Unit.

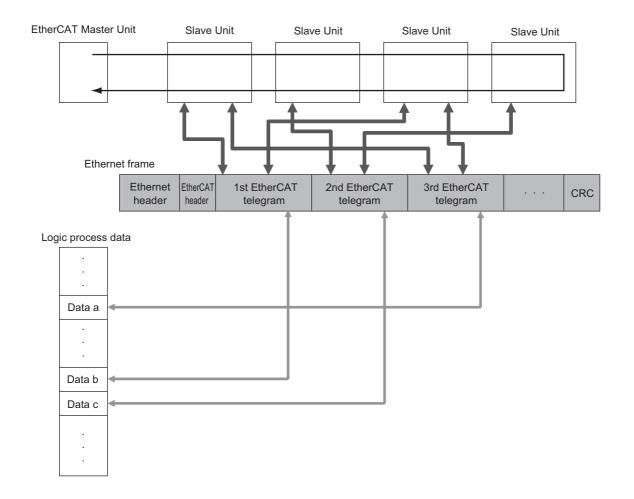

With this structure, EtherCAT secures high-speed and real-time data transmission.

It is the "EtherCAT telegram" stored directly in an Ethernet frame that exchanges data regularly between the EtherCAT Master Unit and Slave Units.

Each "EtherCAT telegram" is configured with telegram header (data length, including address of one or more Slave Units, etc.), data, working counter (check bit).

When an Ethernet frame is compared to a "train", an EtherCAT telegram can be considered as "railway car."

WKC: Working counter


1-1-3 Communications types of EtherCAT

EtherCAT provides the following two types of communication functions.

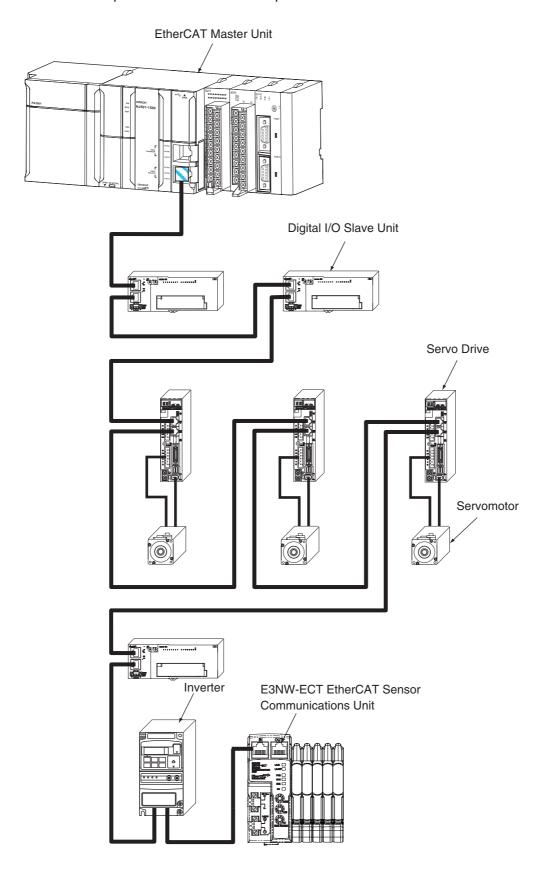
PDO communications are always updating data per communication cycle on EtherCAT, while SDO communications are processed in between those updates.

Process data communications functions (PDO communications)

This communication function is used to transfer process data in real time in a fixed-cycle. By mapping logical process data space to each node by the EtherCAT Master Unit, it achieves fixed-cycle communications among the EtherCAT Master Unit and Slave Units.

Mailbox communications functions (SDO communications)

It refers to message communications.

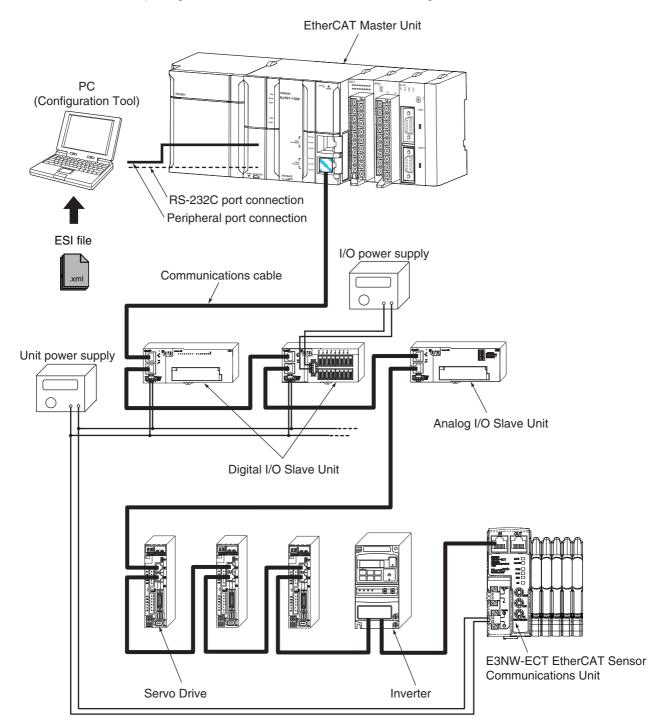

At any timing, the EtherCAT Master Unit transmits commands to Slave Units and the Slave Units return responses to the EtherCAT Master Unit.

It performs the following data communications:

- · Read and write process data
- · Make Slave Unit setting
- · Monitor Slave Unit state

1-1-4 Connection Examples of EtherCAT

This section explains the connection examples of EtherCAT network.



Configuration Elements of EtherCAT Network

This section explains the configuration devices and usages of EtherCAT network.

Configuration Devices of EtherCAT Network 1-2-1

The devices composing an EtherCAT network are shown in the figure below.

1-2-2 Overview of Configuration Devices

The overview of each configuration device is as follows:

EtherCAT Master Unit

Administers the EtherCAT network, monitors the state of Slave Units, exchanges I/O data with Slave Units.

EtherCAT Slave Unit

Outputs data received from the EtherCAT Master Unit through the EtherCAT network, or sends input data to the EtherCAT Slave Unit through the EtherCAT network.

There are Digital I/O Slave Unit and Analog I/O Slave Unit.

Configuration Tool

It is a PC software for making setting of the EtherCAT network and each Slave Unit.

It can be used either by connecting to the EtherCAT Master Unit or as a substitute of the EtherCAT Master Unit.

Communications cable

Uses cables of Ethernet category 5 (100BASE-TX) or higher, with double-shield (aluminum tape and braided shielding), which are connected straight.

Refer to "4-2 Connecting to EtherCAT Network" on page 4-4.

ESI (EtherCAT Slave Information) file

Describes information specific to EtherCAT Sensor Communication Units in XML format.

You can load an ESI file into the Configuration Tool to easily allocate slave process data and make other settings.

Refer to "5-2 EtherCAT Slave Information File (ESI File)" on page 5-3.

Unit power supply

Provides power for communications of each Slave Unit and internal operations.

Separate them from the I/O power supply when wiring.

Refer to "4-3 Connecting to Unit Power Supply and I/O Power Supply" on page 4-8.

I/O power supply

Provides power for input/output operations of external devices connected to Slave Units. Separate from Unit power supply when wiring.

The E3NW-ECT does not require an I/O power supply.

EtherCAT Sensor Communication Unit

This chapter explains the overview of EtherCAT Slave Unit.

2-1		rview of E3NW-ECT	
2-2	Conn	ectable Sensor Amplifiers	2-3
	2-2-1	List of Sensor Amplifiers and communication unit compatible version	. 2-3
	2-2-2	Number of Connected Sensor Amplifiers	2-3

Overview of E3NW-ECT 2-1

This section explains the overview of E3NW-ECT.

2-1-1 Features of E3NW-ECT EtherCAT Sensor Communication Units

This Sensor Communication Unit is a communications slave that processes EtherCAT communications between Digital Sensors and a PLC to monitor the ON/OFF output status and detection levels, write parameters, and operate the Sensors.

The PDOs in EtherCAT communications allow you to monitor the ON/OFF status of the outputs or the detection levels without any programming. The SDOs give you the ability to read and write to any specified parameter.

Optimum Functionality and Ease of Operation Based on Unified **Specifications**

The E3NW-ECT EtherCAT Sensor Communication Units are Sysmac devices.* You can use them together with NJ-series Controller, other Machine Automation Controllers, and the Sysmac Studio Automation Software to achieve optimum functionality and ease of operation.

* "Sysmac devices" is a generic name for EtherCAT Sensor Communication Units and other OMRON control components that were designed with the same communications and user interface specifications.

2-2 Connectable Sensor Amplifiers

This section explains the types of connectable sensor amplifiers with EtherCAT Sensor Communication Units.

2-2-1 List of Sensor Amplifiers and communication unit compatible version

Name	Model	Features	Supported from E3NW-ECT Version
Smart Fiber Amplifiers	E3NX-FA□0	These standard fiber amplifiers are easy to use and set up.	
Smart Laser Amplifier Unit	E3NC-LA0	These laser sensors use a minute spot and yet they provide stable detection.	
Smart Laser Amplifier Unit (CMOS Type)	E3NC-SA0	These laser sensors use a CMOS device that allows reliable detection of stepped surfaces.	
Contact-type Smart Sensors	E9NC-TA0	These contact-type sensors are durable.	Ver.1.03
Color fiber amplifier	E3NX-CA0	Fiber amplifier with color sensing for stable detection	Ver.1.06
Smart Fiber Amplifiers	E3NX-MA0	Fiber Amplifier with Light Emission/Reception	Ver.1.08
Smart Fiber Amplifiers	E3NX-FAH0	Fiber Amplifier with Near Infrared Light Emission/Reception	Ver.1.08
Smart Amplifier Separation Proximity Unit	E2NC-EA□0	Proximity Sensor Amplifier	Ver.1.08
Smart Analog Input Unit	E9NC-AA□0	Current (4 to 20 mA) Input Amplifier	Ver.1.08
Smart Analog Input Unit E9NC-VA		Voltage (1 to 5 V) Input Amplifier	Ver.1.08
Smart Analog Input Unit	E9NC-VD□0	Voltage Differential Input (-2 to 2V), Input Type	Ver.1.08

^{*} You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)

2-2-2 Number of Connected Sensor Amplifiers

This Sensor Communication Unit allows you to connect up to 30 Sensor Amplifiers, including those that are connected to the Distributed Sensor Units.

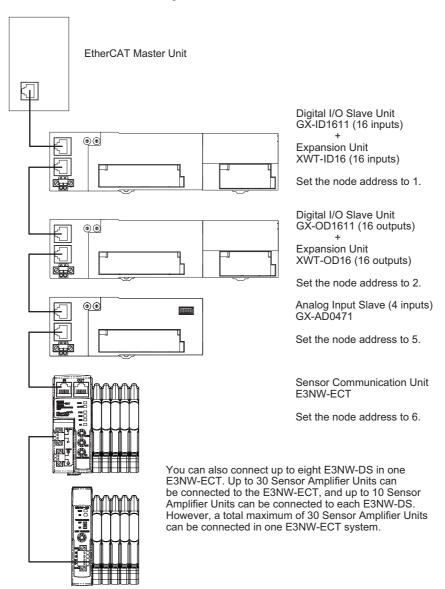
You can connect up to 10 Sensors to a Distributed Sensor Unit.

You can connect up to eight Distribution Sensor Units in one Sensor Communication Unit.

^{*} Also refer to the Sensor Amplifier specifications, as the number of connected units varies depending on the Sensor Amplifier specifications.

Basic Usage Procedures

This chapter explains the procedure of using EtherCAT Sensor Communication Units based on specific setting examples.


3-1	Setup 3-1-1 3-1-2	Examples and Basic Procedure	3-2
3-2	Setting 3-2-1 3-2-2 3-2-3 3-2-4 3-2-5	Mounting Hardware Mounting and Setting EtherCAT Master Unit Mounting and Setting Slave Units Wiring Communications Cables Connecting Power Supplies Connecting fiber or Sensors head	3-4 3-4 3-4 3-4
3-3	Startin 3-3-1 3-3-2 3-3-3	Starting a System	3-5 3-5
3-4	Check 3-4-1 3-4-2 3-4-3	ing Operations Checking Unit Displays Confirming Data Read and Write Setting Slave Unit Parameter	3-6 3-6

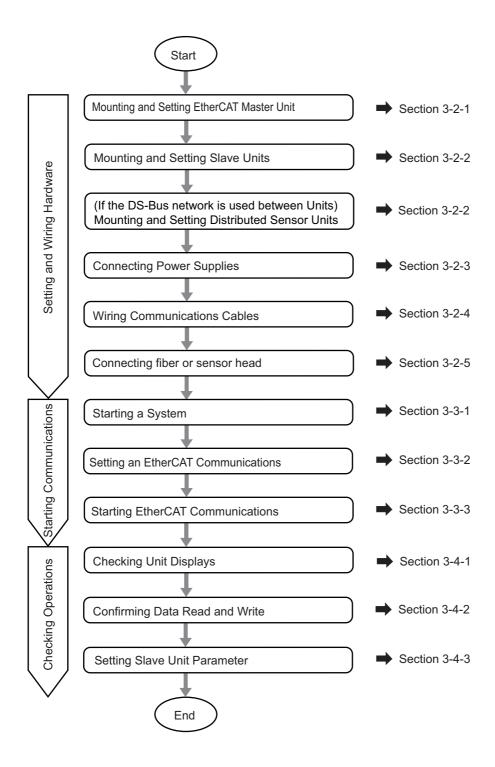
Setup Examples and Basic Procedure

This section explains the setup method by using simple system setting examples.

3-1-1 System Setting Examples

Connect each of the following Slave Units to the EtherCAT Master Unit and make the settings.

Although it is not shown in the figure above, supply the unit power and the I/O power separately.


Reference

The setting example explained here is the basic setting of E3NW-ECT EtherCAT Sensor Communication Units.

If more detailed settings are required in actual operation, refer to the manual of the EtherCAT Master Unit. Moreover, if your system configuration includes Slave Units other than our products, make the setting upon referring to the manual of the relevant Slave Units.

3-1-2 Basic Procedure

This is the flow of the procedures explained in the following sections.

Setting and Wiring Hardware 3-2

Make settings and wiring of the EtherCAT Master Unit and Slave Units, and power supply.

3-2-1 Mounting and Setting EtherCAT Master Unit

Mount the EtherCAT Master Unit at the prescribed location and make settings of Unit No. and so on. For the detailed explanation, refer to the manual of the EtherCAT Master Unit to be used.

3-2-2 Mounting and Setting Slave Units

Mount each slave and Distributed Sensor Unit in their designated locations, and then set the node addresses and other settings.

For details, refer to each item below.

Mounting

"4-1 Mounting E3NW-ECT and Sensor Amplifiers" on page 4-2

Setting Hardware

"6-3-2 Node Address Setting Switches" on page 6-6 Set the node address.

3-2-3 Wiring Communications Cables

Connect communications cables to the EtherCAT master, slaves, and the Distributed Sensor Units. Refer to "4-2 Connecting to EtherCAT Network" on page 4-4 for wiring procedures.

3-2-4 **Connecting Power Supplies**

Connect the Unit power supply to the EtherCAT master, slaves, and the Distributed Sensor Units. In addition, connect the I/O power supply to each Slave Unit as required.

For the connection method, refer to "4-3 Connecting to Unit Power Supply and I/O Power Supply" on page 4-8 or the wiring diagram of each Slave Unit (in pages explaining the details).

Connecting fiber or Sensors head 3-2-5

Connect fiber or sensor head to sensor amplifier For the connection method, refer each sensor amplifier manual

Reference

If you connect the Distribution Sensor Unit to your network, refer to "A-2 Using Distributed Sensor Units" on page A-52 as well.

3-3 Starting Communications

Start the system, allocate I/O data of Slave Units, and then start the EtherCAT communications. For operational state and details of it, refer to "5-3 Communications State Transitions" on page 5-4.

3-3-1 Starting a System

Turn ON the power supply to the Units in order.

- (1) Unit power supply of Slave Units (When the power is supplied, Slave Unit's [PWR] indicator is lit.)
- If you are using Distributed Sensor Units, turn ON the power supply to the Distributed Sensor Units
 as well.
- (2) Unit power supply of EtherCAT Master Units

3-3-2 Setting EtherCAT Communications

The following communications are performed in EtherCAT.

PDO communications (remote I/O communications)

Allocate I/O data of Slave Units to the EtherCAT Master Unit (PDO mapping) and perform PDO communication (remote I/O communications).

For the detailed explanation of I/O data of each Slave Unit, refer to "I/O Data Allocation (PDO Mapping)" in Chapter 7.

Note that the ESI file are used to allocate I/O data.

For the detailed explanation of the procedure, refer to the manual of the EtherCAT Master Unit to be used and the manual of the Configuration Tool.

The maximum assignable PDO size for the E3NW-ECT is 350 bytes. (Refer to "7-2-3 Mode Setting Functions for PDO Communications" on page 7-6 for details.) Do not assign PDOs that exceed the maximum assignable PDO size.

SDO communications (message communications)

For the method of using, refer to the manual of the EtherCAT Master Unit to be used.

Refer to "Appendix A - 1 Object Dictionary" for the detailed explanation of objects implemented on E3NW-ECT EtherCAT Sensor Communication Units.

Note that the SDO communications can be used in the pre-operational state or more.

3-3-3 Starting EtherCAT Communications

Shift to the operational state (EtherCAT communications possible) to start the EtherCAT communications.

For how to shift to the operational state, refer to the manual of the EtherCAT Master Unit to be used.

Checking Operations

Confirm that the LED indicators of the EtherCAT Master Unit and Slave Units are normal status and that I/O data is correctly read and written.

Moreover, make parameter settings for Slave Units as required.

Checking Unit Displays 3-4-1

EtherCAT Master Unit

Refer to the manual of the EtherCAT Master Unit to be used.

EtherCAT Sensor Communication Units

Check that the status indicator of each Slave Unit is as follows.

Indicator	State
PWR	ON
L/A IN	Flickering
L/A OUT	Flickering (turned OFF for the terminal Slave Unit only)
RUN	ON
ERR	OFF
SS	Lit red. (The number of actual connections does not agree with the number of connections that were detected when the Unit was started.) Lit green. (The number of actual connections agrees with the number of connections that were detected when the Unit was started.)

If the status indicator indicates other statuses than above, refer to "8-1 Troubleshooting" on page 8-2.

Distributed Sensor Unit

Make sure the status indicators on each slave are as described in the following table.

Indicator	State
RUN	Lit.
SS	Lit red. (The number of actual connections does not agree with the number of connections that were detected when the Unit was started.) Lit green. (The number of actual connections agrees with the number of connections that were detected when the Unit was started.)

3-4-2 **Confirming Data Read and Write**

Use a Configuration Tool, such as the Sysmac Studio, to read input and output data from the EtherCAT master to make sure the I/O data is being read and written correctly.

3-4-3 **Setting Slave Unit Parameter**

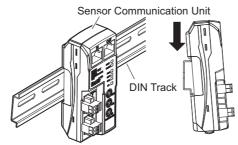
Make parameter settings for each Slave Unit as required via the SDO communications. Refer to Chapter 7 Function Specifications and the pages that provide details in the Appendix for further information on the parameters that can be set. Always set the following objects in your initial settings for the E3NW-ECT.

• If you intend to use a Dummy Sensor, make sure to register the Dummy Sensor.

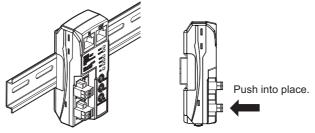
Installation and Wiring

This chapter explains the mounting and wiring methods of the EtherCAT Slave Unit.

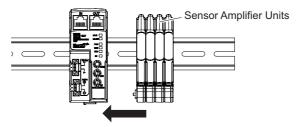
4-1	Mount	ing E3NW-ECT and Sensor Amplifiers	4-2
	4-1-1	Mounting Method	4-2
	4-1-2	Removal Method	4-3
4-2	Conne	ecting to EtherCAT Network	4-4
	4-2-1	Precautions for Network Connection	4-4
	4-2-2	Preparation for Connecting Network	4-5
	4-2-3	Connecting Communications Cables and Connectors	4-6
	4-2-4	Connecting to Communications Cables	4-7
4-3	Conne	ecting to Unit Power Supply and I/O Power Supply	4-8
	4-3-1	Precautions at Supplying Unit Power and I/O Power	4-8
	4-3-2	Unit Power Supply Specifications	4-8
	4-3-3	Connecting the Unit Power Supply	

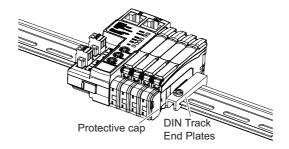

Mounting E3NW-ECT and Sensor Amplifiers

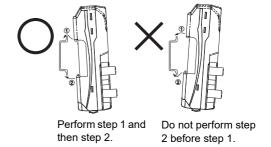
This section describes how to mount and remove the E3NW-ECT and individual Amplifiers to the DIN Track.


4-1-1 **Mounting Method**

Use the following procedure to mount the Units.

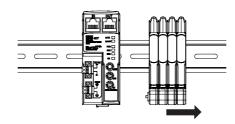

1. Hook the upper portion of the Unit on the DIN Track.


2. Press the lower portion of the Unit against the DIN Track.

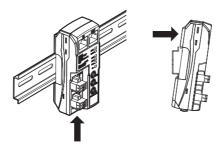

3. Remove the protective cap from the right side of the Sensor Communication Unit. Then, slide the Sensor Amplifier Units against the Sensor Communication Unit with the tabs aligned with the notches in the connector area. Press them together until they click into place.

4. Use the DIN Track End Plates (PFP-M) that are provided to remove any gaps between the Units and secure them in place. Replace the protective cap that you removed in step 3 to the Sensor Amplifier on the right end.

Do not perform steps 1 and 2 in the reverse order. This may reduce the mounting strength.



After you finish these steps, make sure the E3NW-ECT is securely in place.


4-1-2 Removal Method

Use the following procedure to remove the Units.

1. Slide the Sensor Amplifier Units away and remove the Sensor Communication Unit first.

2. Keep the Sensor Communication Unit pressed against the DIN Track as you lift it up, and then off.

Connecting to EtherCAT Network 4-2

This section explains how to lay down EtherCAT network.

4-2-1 **Precautions for Network Connection**

Observe the precautions below when laying down the EtherCAT network.

Precautions at laying down network

- When laying down an EtherCAT network, take sufficient safety measures and construct the network according to the standards. We recommend to request specialized constructors familiar with the safety measures and standards to perform the laying operation.
- Do not lay down EtherCAT network devices near any devices generating noise. If there is no choice but to lay them down in a noisy environment, make sure to take noise measures such as housing each device in metal cases.

Precautions at laying down communications cables

- · Check the following items for communications cables to be used.
 - Are there any disconnected cables?
 - · Are any cables short-circuited?
 - Are there any problems in connector connections?
- To connect a cable to communications connector of each device, insert it securely until the connector of the communications cable is locked.
- · Lay down and wire the communications cables separately from high-voltage electrical power lines.
- Do not lay down the cables near devices generating noise.
- Do not lay down the cables in high-temperature and high-humidity environment.
- · Use the cables in locations without powder dust and oil mist.
- · There is a limit to the bending radius of communications cables. Check the specification of communications cables to be used for the information on bending radius.

4-2-2 Preparation for Connecting Network

Prepare the following devices.

Product name	Comment
Twisted-pair cable (Cables with connectors below are also allowed.)	100BASE-TX (Category 5 or higher) Double-shield (aluminum tape + braided shielding)
RJ45 connector	Category 5 or higher Shielded

Precautions for Correct Use

- The maximum cable length between connected nodes is 100 m. Note that some cables do not guarantee 100 m. In general, if the conductors are strand wire, the transmission performance will be lower than solid wire and the operation at 100-m distance cannot be guaranteed. Confirm details with the cable manufacturer.
- When selecting connectors, check that the cables to be used conform to connectors. Items to be checked include conductor size, conductor wire type (solid wire/twisted wire, 2/4 pairs), and outer diameter.

Reference

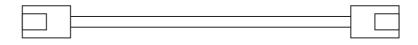
We recommend cables with double, aluminum tape and braided shielding, taking noise resistance into consideration.

Recommended Parts

The recommended products for the parts described above are listed below.

• Sizes and Conductor Pairs: AWG 24 × 4 Pairs

Part	Manufacturer	Model
	Tonichi Kyosan Cable, Ltd.	NETSTAR-C5E SAB 0.5×4P
Communications Cables	Kuramo Electric Co., Ltd.	KETH-SB
	SWCC Showa Cable Systems Co. Ltd.	FAE-5004
Connectors	Panduit Corporation	MPS588


Sizes and Conductor Pairs: AWG 22 × 2 Pairs

Part	Manufacturer	Model
Communications Cables	Kuramo Electric Co., Ltd.	KETH-PSB-OMR
Connectors	OMRON Corporation	XS6G-T421-1

(Notes) We recommend that you use combinations of the above Cables and Connectors.

Connecting Communications Cables and Connectors 4-2-3

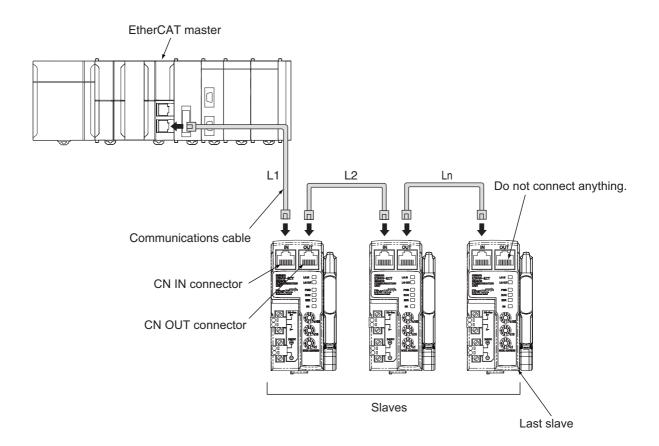
Connect a communications cable and a connector by wiring them straight as shown below.

Pin No.	Wire color		Wire color	Pin No.
1	White-Green	<i></i>	White-Green	1
2	Green	+	Green	2
3	White-Orange		White-Orange	3
4	Blue		Blue	4
5	White-Blue		White-Blue	5
6	Orange		Orange	6
7	White-Brown	}	White-Brown	7
8	Brown	}-	Brown	8
Connector hood	Shielded cable *		Shielded cable*	Connector hood

^{*} Connect both ends of cable shielded wires to the connector hoods.

Reference

There are 2 types of wiring standards for Ethernet cables: "T568A" and "T568B." The figure above shows a wiring method conforming to the standard "T568A". The wiring method conforming to the standard "T568B" can also be used.


4-2-4 Connecting to Communications Cables

EtherCAT networks allow free wiring in any connection forms. Connection before and after the E3NW-ECT EtherCAT Sensor Communication Units shall be made in daisy chain connection.

Connect the communications cable from the EtherCAT Master Unit to the [CN IN] connector of the Slave Units. Connect another the communications cable from the [CN OUT] connector of the first Slave Unit to the [CN IN] connector of the next Slave Unit.

Note that nothing should be connected to the [CN OUT] connector of the Slave Unit at the terminal end of the network.

Refer to A-2 *Using Distributed Sensor Units* on page A-52 for connection with the Distributed Sensor Units.

Precautions for Correct Use

- The cable length between each Slave Unit (L1, L2, ... Ln) must be within 100 m.
- Connect cables securely until communications cable connectors click and are fixed in place.
- When you wire the communications cables, observe their specifications (bending radius and so on) defined by the cable manufacturer.

Connecting to Unit Power Supply and I/O Power Supply

A unit power supply is required to connect if you use the E3NW-ECT to build the EtherCAT network. E3NW-ECT does not require an I/O power supply.

The method for supplying power to the Unit is described below.

4-3-1 Precautions at Supplying Unit Power and I/O Power

When supplying the unit power supply and I/O power supply, take the followings into consideration for allowable current of cables and connectors, voltage drop, and layout of power supplies.

- Consideration to cable voltage drop The power supply voltage of a Slave Unit farthest to the power supply must be within the allowable variation range.
- Supplying unit power supply and I/O power supply from multiple sources When the unit power and I/O power are supplied from multiple power supplies instead of from one power supply, the line current, voltage drop, and cable size can be reduced. Moreover, it is effective to secure safety of the system at power supply errors.
- If power supply errors occur

Consideration on layout and grouping of power supplies differ by whether you want to stop the entire system or not when a power supply error occurs.

If you want to avoid stopping the entire system, we recommend to set power supplies at several locations and supply power to groups of Slave Units, or take similar measures.

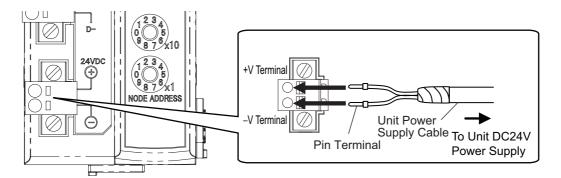
This has also the effects of reducing voltage drop and cable size and so on.

4-3-2 **Unit Power Supply Specifications**

Use a general purpose power supply that satisfies the following specifications.

Item	Specification
Output voltage	24 VDC ± 10%
Output ripple	600 mVp-p
Output current	Has the capacity to supply power more than the total current consumption of each Slave Unit
Isolation	Between output and AC power supply as well as between output and chassis ground

We recommend S8JX series power supplies made by OMRON for the unit power supply for Slave Units.



Precautions for Correct Use

- The I/O power supply for the input section of the e-CON connector type Slave Units is shared with the unit power supply. To calculate the output current of the Unit power supply, the current consumption of the Unit power supply must include the total current consumption of the E3NW-DS and the current consumptions of the Sensor Amplifier Units that are used.
- Select a power supply that has sufficient capacity, allowing for the inrush current at system startup.

4-3-3 Connecting the Unit Power Supply

Connect a cable from the 24-VDC unit power supply to the unit power supply connector on each Slave Unit, and supply power to individual Slave Units.

Mount a pin terminal, or equivalent to the unit power supply cable so that it will not be displaced. Do not wire a power supply to the communications path of the Distributed Sensor Units. The Units may be damaged.

Recommended product

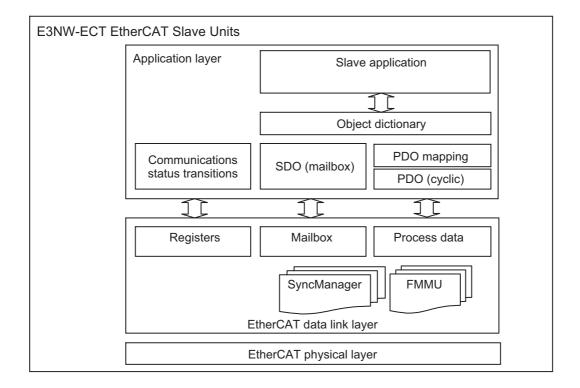
The following pin terminals are recommended for the unit power supply cables.

Model	Applicable wire size	Crimping tool	Manufacturer
AI0,5-10WH	0.5 mm ² /AWG20	CRIMPFOX UD6 (Product No. 1204436) or CRIMPFOX ZA3 series	Phoenix Contact Co., Ltd.
H0.5/16 orange	0.5 mm ² /AWG20	Crimper PZ1.5 (Product No. 900599)	Weidmueller Japan Co., Ltd.

Also, the following screwdriver is recommended for removing pin terminals.

Model	Manufacturer	
XW4Z-00C	OMRON	

EtherCAT Communications


This chapter explains the overview of EtherCAT communications.

5-1	Structure of CAN application protocol over EtherCAT (CoE) 5-2			
5-2	EtherCAT Slave Information File (ESI File)	EtherCAT Slave Information File (ESI File) 5-3		
5-3	Communications State Transitions	5-4		
5-4	Process Data Objects (PDO) 5-4-1 Overview 5-4-2 PDO Mapping Settings	5-5		
	5-4-3 Sync Manager PDO Assignment Settings	5-6		
5-5	Service Data Object (SDO) 5-5-1 Overview	5-10		
5-6	EtherCAT Master Unit - Slave Unit Communications . 5-6-1 FREE RUN Mode	5-11		
5-7	Emergency Messages	5-12		
5-8	Sysmac Device Functions	5-13		

Structure of CAN application 5-1 protocol over EtherCAT (CoE)

Normally, multiple protocols can be transferred by EtherCAT. But E3NW-ECT EtherCAT Sensor Communication Units use "CAN application protocol over EtherCAT (CoE)", a communication interface to be applied for EtherCAT devices, as the device profile of the open network standard "CAN application protocol."

The figure below shows the structure of CoE in E3NW-ECT EtherCAT Sensor Communication Units.

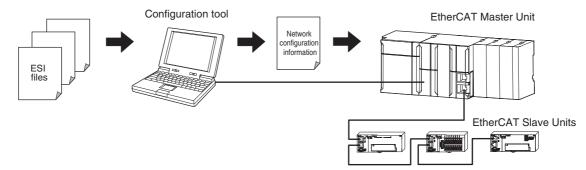
CAN application protocol has two types of object dictionaries, PDO (Process Data Object) and SDO (Service Data Object).

PDO is composed of object dictionaries that can be mapped. The process data is defined by PDO

PDO is primarily used in PDO communications for regularly exchanging process data.

Moreover, SDO is able to read and write all object dictionaries and is used in non-fixed-cycle type SDO (event type messages) communications.

By using the CoE interface to set object SDO and PDO dictionaries, EtherCAT can provide EtherCAT devices with the same device profile as CAN application protocol.

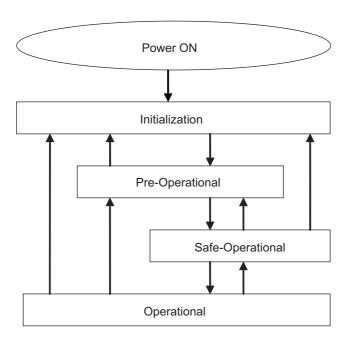

5-2 EtherCAT Slave Information File (ESI File)

An EtherCAT Slave Information (ESI) file contains the setting information of an EtherCAT Slave Unit. Various EtherCAT communications setting can be defined from the ESI files of connected Slave Units and the network connection information.

ESI files are installed in the configuration tool to create network configuration information.

You can download the network configuration information to the EtherCAT Master Unit to configure the EtherCAT network.

The ESI files for the OMRON EtherCAT slaves are already installed in the Sysmac Studio. You can use auto-updating to obtain the ESI files for the latest models.

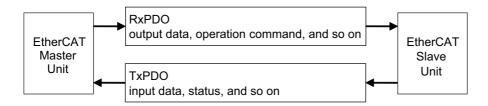


Communications are started according to the communications settings and the network configuration in the ESI files that are installed.

Communications State Transitions

The EtherCAT State Machine (ESM) indicates the state transition model of EtherCAT Slave Unit communications control. It is controlled by EtherCAT Master Unit.

The following figure shows the communications state transitions from power ON.

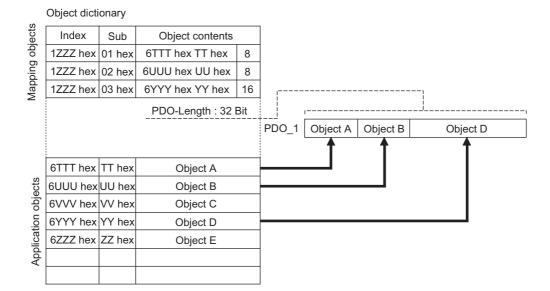

State	SDO communi cations	PDO transmiss ion	PDO reception	Contents
Initialization (Init)	Not	Not	Not	Communications are being initialized.
	possible.	possible.	possible.	Communications are not possible.
Pre-Operational (Pre-Op)	Possible	Not possible.	Not possible.	SDO (message) communications are possible in this state. This state is entered after initialization has been completed. It is used to initialize network settings.
Safe-Operational (Safe-Op)	Possible	Possible	Not possible.	In this state, PDO transmissions are possible in addition to SDO (message) communications. PDO sendings can be used to send information such as status from the Slave Unit.
Operational (Op)	Possible	Possible	Possible	Normal communication state PDO communications can be used to control the I/O data.

E3NW-ECT can't trance the state of Operational, when amplifier does not exist.

5-4 Process Data Objects (PDO)

5-4-1 Overview

The process data objects (PDO) are used for real-time data transfer via cyclic communications. PDOs include RxPDOs, which are used by the slaves to receive data from the EtherCAT master, and TxPDOs, which are used by the slaves to send data to the EtherCAT master.

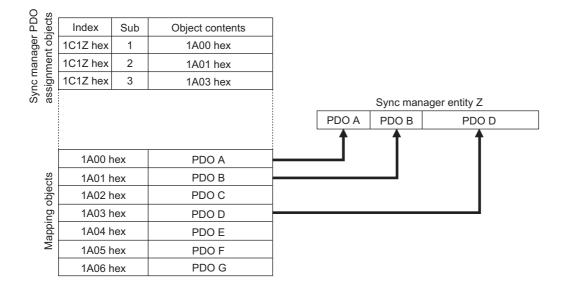

It is possible to hold multiple objects in the EtherCAT application layer so that various process data of EtherCAT Sensor Communication Units can be transferred. The details of process data are described in PDO Mapping Objects and Sync Manager PDO Assignment Objects.

E3NW-ECT EtherCAT Sensor Communication Units support PDO mapping for I/O control.

5-4-2 PDO Mapping Settings

The PDO mapping indicates the mapping for application objects (realtime process data) between the object dictionary and PDO.

The number of mapped objects is described in sub-index 0 of the mapping table. In this mapping table, indexes 1600 hex to 17FF hex are used for RxPDO and 1A00 hex to 1BFF hex are used for TxPDO.


The figure below shows an example of PDO mapping.

5-4-3 **Sync Manager PDO Assignment Settings**

A sync manager channel consists of several PDOs. The sync manager PDO assignment objects describe how these PDOs are related to the Sync Manager.

The number of PDOs is given in sub-index 0 of the sync manager PDO assignment table. In this table, index 1C12 hex is for RxPDOs and 1C13 hex is for TxPDOs.

The figure below shows an example of sync manager PDO mapping.

5-4-4 PDO Mapping

The tables below show the details of PDO mapping for E3NW-ECT EtherCAT Sensor Communication Units.

• Default PDO mapping with OMRON Sysmac Studio

257th Transmit PDO Mapping (1B00 hex)	No.1 Sensor Input 1 No.1 Sensor Input 2 No.8 Sensor Input 1 No.8 Sensor Input 2	Read Input 1st word (6100 hex)
258th Transmit PDO Mapping (1B01 hex)	No.9 Sensor Input 1 No.9 Sensor Input 2 No.16 Sensor Input 1 No.16 Sensor Input 2	Read Input 2nd word (6100 hex)
265th Transmit PDO Mapping (1B08 hex)	Sensor Communication Status	Sensor Communication Status (3001 hex)
267th Transmit PDO Mapping (1B0A hex)	Number of Sensors Setting Number of Sensors Setting with Dummy	Number of Sensors (3001 hex)
268th Transmit PDO Mapping (1B0B hex)	Sensor Warning Status	Sensor Status (300B hex)
273rd Transmit PDO Mapping (1B10 hex)	No. 1 Sensor Detection Level Input 1	Detection Level (4001 hex)
275th Transmit PDO Mapping (1B12 hex)	No. 2 Sensor Detection Level Input 1	Detection Level (4081 hex)
	• • •	
287th Transmit PDO Mapping (1B1E hex)	No. 8 Sensor Detection Level Input 1	Detection Level (4381 hex)
512th Transmit PDO Mapping (1BFF hex)	Sysmac Error Status	Sysmac Error (2002 hex)

Default PDO mapping with OMRON CX-Programmer

257th Transmit	No.1 Sensor Input 1 No.1 Sensor Input 2	
PDO Mapping		Read Input 1st word (6100 hex)
(1B00 hex)	No.8 Sensor Input 1	
	No.8 Sensor Input 2	
	No.9 Sensor Input 1	
258th Transmit	No.9 Sensor Input 2	
PDO Mapping		Read Input 2nd word (6100 hex)
(1B01 hex)	No.16 Sensor Input 1	
	No.16 Sensor Input 2	
266th Transmit		
PDO Mapping	Sensor Communication Status	Sensor Communication Status (3000 hex)
(1B09 hex)		
267th Transmit	Number of Sensors Setting	
PDO Mapping	Number of Sensors Setting with	Number of Sensors (3001 hex)
(1B0A hex)	Dummy	

270th Transmit		
PDO Mapping	Sensor Warning Status 1 to 16	Sensor Status 16 bit (300D hex)
(1B0D hex)		

If you are using the CX-Programmer, you cannot change the PDO mappings listed above from their default settings.

The input data assignments are given below.

Assigned bits

Offset (bytes)	7	6	5	4	3	2	1	0
0	Sensor 4	Sensor 4	Sensor 3	Sensor 3	Sensor 2	Sensor 2	Sensor 1	Sensor 1
	IN2	IN1	IN2	IN1	IN2	IN1	IN2	IN1
+1	Sensor 8	Sensor 8	Sensor 7	Sensor 7	Sensor 6	Sensor 6	Sensor 5	Sensor 5
	IN2	IN1	IN2	IN1	IN2	IN1	IN2	IN1
+2	Sensor 12	Sensor 12	Sensor 11	Sensor 11	Sensor 10	Sensor 10	Sensor 9	Sensor 9
	IN2	IN1	IN2	IN1	IN2	IN1	IN2	IN1
+3	Sensor 16	Sensor 16	Sensor 15	Sensor 15	Sensor 14	Sensor 14	Sensor 13	Sensor 13
	IN2	IN1	IN2	IN1	IN2	IN1	IN2	IN1
+4	Always 0.	Always 0.	Always 0.	Always 0.	Always 0.	Always 0.	S_ERR	BUSY
+5		Number of Sensors Setting						
+6	Number of Sensors Setting with Dummy							
+7	Sensor 8	Sensor 7	Sensor 6	Sensor 5	Sensor 4	Sensor 3	Sensor 2	Sensor 1
	Warning	Warning	Warning	Warning	Warning	Warning	Warning	Warning
	Status	Status	Status	Status	Status	Status	Status	Status
+8	Sensor 16	Sensor 15	Sensor 14	Sensor 13	Sensor 12	Sensor 11	Sensor 10	Sensor 9
	Warning	Warning	Warning	Warning	Warning	Warning	Warning	Warning
	Status	Status	Status	Status	Status	Status	Status	Status

• Default PDO mapping with Other Company Tool

	No. 1 Concer Input 1	<u> </u>
004II T ::	No.1 Sensor Input 1	
261th Transmit	No.1 Sensor Input 2	D 11 (11) (00001)
PDO Mapping		Read Input bits (3020 hex)
(1B04 hex)	No.8 Sensor Input 1	
	No.8 Sensor Input 2	
	No.9 Sensor Input 1	
262th Transmit	No.9 Sensor Input 2	
PDO Mapping		Read Input bits (3020 hex)
(1B05 hex)	No.16 Sensor Input 1	
	No 16 Sensor Input 2	
266th Transmit		
PDO Mapping	Sensor Communication Status	Sensor Communication Status (3000 hex)
(1B09 hex)		, ,
267th Transmit	Number of Sensors Setting	
PDO Mapping	Number of Sensors Setting with	Number of Sensors (3001 hex)
(1B0A hex)	Dummy	·
268th Transmit		
PDO Mapping	Sensor Warning Status	Sensor Status (300B hex)
(1B0B hex)		,
273rd Transmit		
PDO Mapping	No. 1 Sensor Detection Level Input 1	Detection Level (4001 hex)
(1B10 hex)	·	, ,
275th Transmit		
PDO Mapping	No. 2 Sensor Detection Level Input 1	Detection Level (4081 hex)
(1B12 hex)	·	, ,
287th Transmit		
PDO Mapping	No. 8 Sensor Detection Level Input 1	Detection Level (4381 hex)
(1B1E hex)		, ,
, ,	l .	J

Service Data Object (SDO)

5-5-1 **Overview**

E3NW-ECT EtherCAT Sensor Communication Units support the SDO communications.

The EtherCAT Master Unit is able to make parameter settings and monitor status by reading and writing data from and to entries in object dictionaries via the SDO communications.

5-5-2 **Abort Codes**

The table below shows abort codes of SDO communications errors.

Code	Meaning		
05030000 hex	Toggle bit not changed		
0504 0000 hex	SDO protocol timeout		
05040001 hex	Client/Server command specifier not valid or unknown		
0504 0005 hex	Out of memory		
0601 0000 hex	Unsupported access to an object		
06010001 hex	Attempt to read a write only object		
0601 0002 hex	Attempt to write to a read only object		
06020000 hex	The object does not exist in the object directory.		
06040041 hex	The object cannot be mapped into the PDO.		
06040042 hex	The number and length of the objects to be mapped would exceed the PDO length.		
06040043 hex	General parameter incompatibility reason		
06040047 hex	General internal incompatibility in the device.		
06060000 hex	Access failed due to a hardware error.		
06070010 hex	Data type does not match, length of service parameter does not match.		
06070012 hex	Data type does not match, length of service parameter too high.		
06070013 hex	Data type does not match, length of service parameter too low.		
06090011 hex	Sub-index does not exist.		
06090030 hex	Value range of parameter exceeded (only for write access)		
06090031 hex	Value of parameter written too high		
06090032 hex	Value of parameter written too low		
06090036 hex	Maximum value is less than minimum value.		
08000000 hex	General error		
08000020 hex	Data cannot be transferred or stored to the application.		
0800 0021 hex	Data cannot be transferred or stored to the application because of local control.		
0800 0022 hex	Data cannot be transferred or stored to the application because of the present device		
	state.		
0800 0023 hex	Object dictionary dynamic generation fails or no object dictionary is present.		

The following table gives the abort codes for when sending commands to a Sensor Amplifier Unit fails.

Value	Meaning
0800 0021 hex	An unsupported command was sent or the Sensor Amplifier Unit is in a condition under which the command cannot be accepted. Check the command.
06090030 hex	A parameter value is out of range. Check the setting range of the parameter.
08000020 hex	A communications error or other error occurred. Implement retry processing.

5-6 EtherCAT Master Unit - Slave Unit Communications

This section explains the communication modes between the Master Unit and E3NW-ECT EtherCAT Slave Unit.

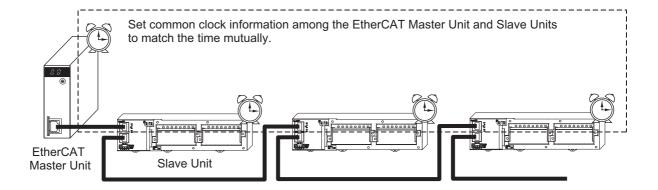
5-6-1 FREE RUN Mode

In the FREE RUN mode, a Slave Unit operates asynchronously with the EtherCAT Master Unit.

To calculate the input and output response time* of the entire system, refer to the relevant values in the manual of the host system (EtherCAT Master or CPU Unit) to be used.

* This is the time which takes for an input signal from an Input Slave Unit to be processed by the PLC of the Master Unit and output to an Output Slave Unit.

5-6-2 DC Mode


In the DC mode, a Slave Unit operates synchronously with the EtherCAT Master Unit.

A mechanism called distributed clock (DC), where the EtherCAT Master Unit and Slave Units share the same clock, is used for synchronization.

Each of DC mode-ready Slave Units connected to EtherCAT shares the clock information.

By generating interrupt signals and executing input/output processing inside each Slave Unit according to the clock, it becomes possible to synchronize the input/output timing with other Slave Units.

The DC mode supported by E3NW-ECT Units is DC mode 1.

Communications cycle

The communications cycle is determined by setting output frequency of Sync0 signal (interrupt signal in DC mode 1).

500 μs, 1 ms, 2 ms, 4 ms

The settings are performed on the EtherCAT Master Unit side. For the setting method, refer to the manual of the EtherCAT Master Unit to be used.

Emergency Messages 5-7

E3NW-ECT EtherCAT Sensor Communication Units are able to notify emergency messages to the EtherCAT Master Unit by using the SDO communications if they detect errors.

5-7-1 **Emergency Message Notification**

It is possible to set whether or not to notify emergency messages via the SDO communications. Target indexes are sub-index 05 hex: (Flags) in 10F3 hex (Diagnostic History).

The setting values are shown in the table below.

Set value	Emergency message notification
0000 hex	Not notify.
0001 hex	Notify.

When the power to it is turned on, a Slave Unit always starts up in the "Not notify" setting. If you want to use a Slave Unit in the "Notify" setting, set it to "Notify" each time you turn on the power. Note that an emergency message cannot be sent during an EtherCAT communications errors are occurring.

An emergency message is composed of 8-byte data as shown below.

Byte	0	1	2	3	4	5	6	7
Contents	Emergenderror code	,	Error register (Object 1001 hex)	Reserved.	Sysmac	error statu	s code	

For contents of emergency message, refer to "8-1-5 Emergency Error Code" on page 8-15. For contents of Sysmac error status codes, refer to "8-1-4 Sysmac Error Status Codes" on page 8-8.

5-7-2 **Diagnosis History**

A E3NW-ECT EtherCAT Slave Unit can save up to eight emergency messages in non-volatile memory inside the Slave Unit. The saved messages can be read with SDO communications. Indexes to be read are sub-indexes 06 hex to 0D hex (Diagnosis messages 1 to 8) among 10F3 hex (Diagnosis History).

Diagnosis history is stored from Diagnosis message 1. If 8 errors are stored in order up to Diagnosis message 8, the 9th error onward are saved from Diagnosis message 1 again.

History is saved even if emergency messages cannot be sent to the EtherCAT Master Unit due to EtherCAT communications errors or emergency messages are set to "Not notify." Errors that occur for non-volatile memory are not saved in the diagnosis history.

5-8 Sysmac Device Functions

"Sysmac devices" is the generic name of control component products that were designed with communications and user interface specifications that are unified for OMRON control components. This functions of these procedures are called Sysmac device functions.

The section explains the functions of Sysmac devices when they are used together with NJ-series Controller or other Machine Automation Controllers, and Automation Software.

The E3NW-ECT is a Sysmac device that supports Sysmac device functionality.

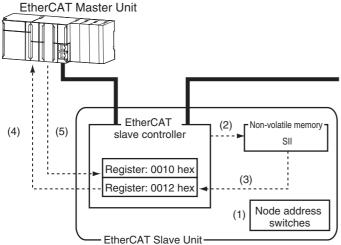
Sysmac error status

Slaves Units that are Sysmac devices systematically handle errors that occur in the Slave Unit. You can therefore use the Sysmac Studio to check errors and confirm corrections by using the same procedures for all Sysmac devices.

Errors are reported in 2002 hex-01 hex (Sysmac Error Status). To display errors that are detected by a Slave Unit on the Sysmac Studio, you must map 2002 hex-01 hex (Sysmac Error Status) to a PDO. In the Sysmac Studio default settings, 2002 hex-01 hex (Sysmac Error Status) is automatically mapped to a PDO in the 512th Transmit PDO Mapping (1BFF hex) assignments.

Reference

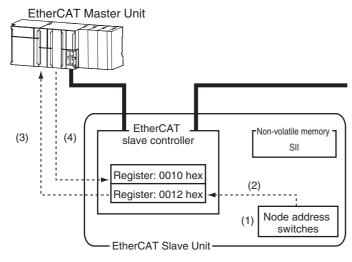
- Refer to "A-1-7 Manufacturer Specific Objects" on page A-15 for information on 2002 hex-01 hex (Sysmac Error Status).
- Refer to "8-1-4 Sysmac Error Status Codes" on page 8-8 for errors that are displayed on the Sysmac Studio.


Saving node address settings

If the node address switches are set to 00, the software setting is enabled and the node address that is set on the Sysmac Studio is used.

To use the software setting, execute the Write Slave Node Address menu command on the Edit Network Configuration Tab Page for EtherCAT. The software setting will be saved in non-volatile memory in the Slave Unit.

· Software setting


The software setting that is set in the SII (slave information interface) in non-volatile memory in the Slave Unit is used as the node address.

- (1) When the power supply is OFF, set the node address switches to 00.
- (2) From the master, write the node address to the SII in the Slave Unit.
- (3) When the power supply to the Slave Unit is turned ON, the software writes the node address setting to register address 0012 hex.
- (4) The EtherCAT Master Unit reads the setting in register address 0012 hex.
- (5) The EtherCAT Master Unit writes the value of address 0012 hex to address 0010 hex.

· Node address switch setting

The value that is set on the node address switches on the Slave Unit is used as the node address.

- (1) When the power supply is OFF, set the node address switches.
- (2) When the power supply to the Slave Unit is turned ON, the value that is set on the node address switches is saved in register address 0012 hex.
- (3) The EtherCAT Master Unit reads the setting in register address 0012 hex.
- (4) The EtherCAT Master Unit writes the value of address 0012 hex to address 0010 hex.

Displaying serial numbers

The serial number that is stored in non-volatile memory in the Slave Unit is given in 1018 hex-04 hex (Serial number). Controllers that support Sysmac device functions can use serial numbers to verify the network configuration.

To verify the configuration, set the Serial Number Check Method parameter to *Setting = Actual device* on the Edit Network Configuration Tab Page for EtherCAT on the Sysmac Studio.

A Network Configuration Verification Error will occur if verification fails for the specified method.

Reference

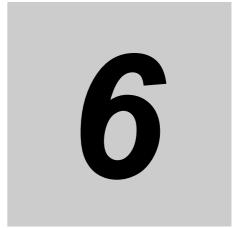
This helps prevent forgetting to set the parameters because a slave device that was replaced is detected.

Conformance to ESI specifications (ETG.2000 S (R) V1.0.1)

The ESI specifications define the contents of the EtherCAT slave information (ESI) files. Controllers that support Sysmac device functions can use an optional function that is defined in the ESI specifications to specify backup parameters in the Slave Units.

You can back up and restore the backup parameters that are defined in the Slave Units from the Sysmac Studio.

SII data checking


The SII (slave information interface) contains specific configuration information on the EtherCAT slave that is written in non-volatile memory in the EtherCAT Slave Unit.

EtherCAT Sensor Communication Units that are Sysmac devices check the information in the SII at the Slave Units.

Precautions for Correct Use

Do not change the SII information with setting software that is produced by other companies.

Hardware Specifications of E3NW-ECT

This chapter explains EtherCAT communication specifications and Hardware specifications.

6-1	Ether	CAT Communications Specifications 6-	-2
6-2	Gener	al Specifications 6-	-3
6-3	6-3-1 6-3-2 6-3-3	vare Specifications6-Status Indicators6-Node Address Setting Switches6-Communications Connectors6-Unit Power Supply Connector6-	-4 -6 -7

EtherCAT Communications 6-1 **Specifications**

This section explains the communications specifications of the E3NW-ECT EtherCAT Slave Unit.

Item	Specification		
Communication protocol	Dedicated protocol for EtherCAT		
Modulation	Base band		
Baud rate	100 Mbps		
Physical layer	100BASE-TX (IEEE802.3u)		
	RJ45 × 2 (Shielded)		
Connectors	CN IN: EtherCAT input		
	CN OUT: EtherCAT output		
Topology	Daisy chain		
Communications media	Category 5 or higher (cable with double, aluminum tape and braided shielding is		
Communications media	recommended.)		
Communications distance	Distance between nodes 100 m max.		
Noise immunity	Conforms to IEC 61000-4-4, 1 kV or higher		
Node address setting method	Set with decimal rotary switches or software. *1		
Node address range 000 to 192 *2			
-	PWR×1		
	L/A IN (Link/Activity IN) × 1		
Indicator	L/A OUT (Link/Activity OUT) × 1		
	RUN × 1		
	ERR × 1		
Process data	PDO mapping		
PDO size/node	350 byte (max)		
Mailbox	Emergency messages and SDO requests		
SYNCHRONIZATION mode	Free Run mode (asynchronous) and DC mode 1		

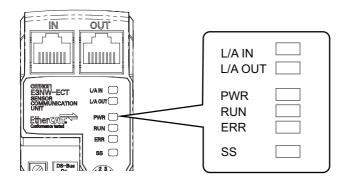
^{*1} The software setting is used when the node address setting switches are set to 0.

^{*2} The range depends on the EtherCAT master that is used. Refer to "6-3-2 Node Address Setting Switches" on page 6-6 for details.

6-2 General Specifications

This section explains the general specifications of the E3NW-ECT EtherCAT Slave Unit.

Item	Specification	
Unit power supply voltage	24 VDC (20.4 to 26.4 VDC)	
Power and current	2.4 W max. (Not including the power supplied to Sensors.), 100 mA max. (Not	
consumption	including current supplied to Sensors.)	
Noise immunity Conforms to IEC 61000-4-4, 1 k (power line).		
Vibration resistance	10 to 60 Hz with an amplitude of 0.7 mm, 60 to 150 Hz, 50 m/s ² , 1.5 hours each in X, Y, and Z directions	
Shock resistance	150 m/s ² with amplitude of 0.7 mm	
SHOCK resistance	(3 times each in 6 directions on 3 axes)	
Dielectric strength	500 VAC, 50 and 60 Hz, 1 min	
Insulation resistance 20 MΩ or more (at 500 VDC)		
Ambient operating	0 to 55 °C ^{*1}	
temperature	0 to 55 °C ·	
Ambient operating	25% to 85% (with no condensation or icing)	
humidity	20% to 00% (with the control control of formy)	
Ambient operating	No corrosive gases	
atmosphere	, and the second	
Storage temperature -30 to 70 °C (with no condensation or icing)		
Storage humidity 25% to 85% (with no condensation or icing)		
Installation method	35-mm DIN track mounting	
Number of connected	*2	
units limitation		


^{*1} The temperature is limited by the number of Amplifiers that are connected. For 1 to 2 Amplifiers: 0 to 55°C; 3 to 10 Amplifiers: 0 to 50°C; 11 to 16 Amplifiers: 0 to 45°C; 17 to 30 Amplifiers: 0 to 40°C.

^{*2} When using the OMRON CJ-series and CJ1W-NC□82, up to 4 sensor communication units can be connected per CJ1W-NC□82 unit.

Hardware Specifications 6-3

6-3-1 **Status Indicators**

It indicates the current state of an EtherCAT Slave Unit.

[PWR] indicator

Indicates the unit power supply state.

Color	State	Contents
Green	OFF	Unit power OFF state
	ON	The unit power (24 VDC) is supplied to the Slave Unit.

[L/A IN] indicator

Indicates the communication state (input side).

Color	State	Contents
	OFF	Link not established in physical layer
Green	Flickering	In operation after establishing link
	ON	Link established in physical layer

[L/A OUT] indicator

Indicates the communication state (output side).

Color	State	Contents
Green	OFF	Link not established in physical layer
	Flickering	In operation after establishing link
	ON	Link established in physical layer

[RUN] indicator

It indicates the operation state.

Color	State	Contents
Green	OFF	Init state
	Blinking	Pre-Operational state
	Single flash	Safe-Operational state
	ON	Operational state

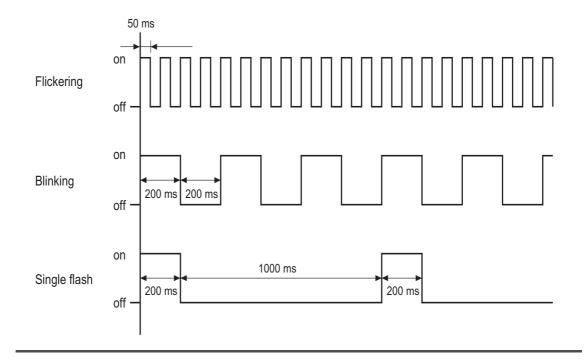
For details on each state, refer to "5-3 Communications State Transitions" on page 5-4.

[ERR] indicator

It indicates the information of an error.

Color	State	Contents
Red	OFF	No error
	Blinking	Communications setting error
	Single flash	Synchronization error or communications data error
	Flickering	Boot error
	ON	PDI WDT timeout

[SS] indicator


It indicates the information of an Sensor Status.

Color	State	Contents
	OFF	Power OFF or Initial status of sensor connection
Green	ON	Normal
Red	ON	Sensor Error: Connecting Sensors is different form setting.

Reference

The timing of each flashing state of indicator is as follows.

6-3-2 **Node Address Setting Switches**

These switches are used to set node addresses of Slave Units in the EtherCAT network (decimal). Set the node address switches as follows: Top switch for the 100s digit, middle switch for the 10s digit, and the bottom switch for the 1s digit.

Setting range is 000 to 997. (Default setting: 000)

Setting the node address (×100)

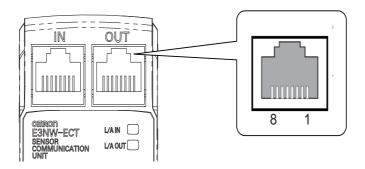
Setting the node address (×10)

Setting the node address (×1)

Note that the node address set values vary as shown below when the EtherCAT Master Unit is made by OMRON or by other manufacturers.

Node address	Set value for node address		
switch setting	OMRON EtherCAT Master Unit NJ□01-1□00 or CJ1W-NC□82	EtherCAT Master Unit from another manufacturer	
000	The node address can be set within the following range with the Configuration Tool. NJ□01-1□00: 001 to 192 CJ1W-NE□82: 001 to 077	Sotting with the Configuration Tool	
001 to 997	The value that is set on the node address switches is used as the node address. The valid setting ranges are as follows: NJ□01-1□00: 001 to 192 CJ1W-NE□82: 001 to 077	Setting with the Configuration Tool (The switch setting has no effect.)	

(Notes) The system will not operate correctly if the node address switches are set to 998 or 999.

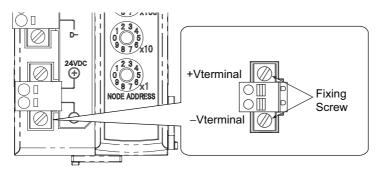


Precautions for Correct Use

- The setting on the node address switches is read only once when the power is turned ON. Even if the settings are changed after turning the power supply ON, they are not reflected in the control. They become effective when the power supply is turned ON the next time.
- · If node addresses overlap, an error occurs and the operation stops.

6-3-3 Communications Connectors

The Connectors are used to connect the communications cables.


The specifications are shown below.

- Electrical characteristics: Conforms to the IEEE 802.3u standard.
- Connector structure: RJ45 8-pin modular connector (conforms to ISO 8877)
- · Terminal arrangement

Pin No.	Signal name	Abbreviation
1	Send data +	TD +
2	Send data –	TD –
3	Receive data +	RD +
4	Not used	_
5	Not used	_
6	Receive data –	RD –
7	Not used	_
8	Not used	_
Hood	Frame ground	FG

6-3-4 Unit Power Supply Connector

The Connector is used to connect the unit power supply (24 VDC).

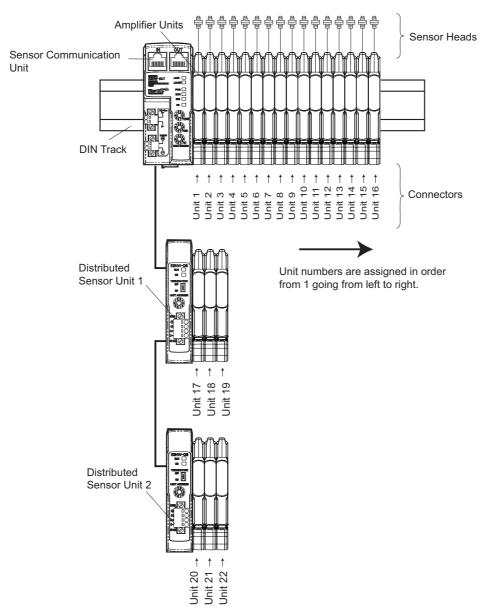
Name	Specification
+V	24 VDC
-V	0 VDC

- Connector type: Spring connection connector with fixing screw (2-pin)
- Supported pin terminal diameter: 0.25 mm² to 0.5 mm²/AWG24 to AWG20 (Pin terminal with isolation sleeve used)

For types of recommended pin terminals, refer to "4-3-3 Connecting the Unit Power Supply" on page 4-9.

Function Specifications

This chapter explains the function specifications of E3NW-ECT.


7-1		ta Allocation (PDO Mapping)	
7-2	Functions of E3NW-ECT		
	7-2-1	Input Filter	5
	7-2-2	Dummy Sensor Setting	6
	7-2-3	Mode Setting Functions for PDO Communications	6
	7-2-4	Automatic Detection of Connected Sensor Amplifiers	8
7-3	Mount	ing Dimensions7-	9

I/O Data Allocation (PDO Mapping)

I/O data of Digital I/O Slave Units are allocated to the input/output areas of the I/O memory of the EtherCAT Master Unit, respectively. For the detailed explanation of allocation method, refer to the manual of EtherCAT Master Unit to be connected.

7-1-1 **Input Data Allocation**

Sensor Numbers

The Sensor Communication Unit identifies each connected Sensor Amplifier by its unit number. The unit numbers for the Sensors are numbered in order starting from 1. Each Sensor Amplifier that is assigned a unit number has an input 1 (Sensor output 1) and input 2 (Sensor output 2). The unit numbers of the Sensor Amplifiers that are connected to a Distributed Sensor Unit are numbered sequentially, in the order shown below, following the unit numbers of the Sensor Amplifiers that are connected to the Sensor Communication Unit.

Sensor Communication Unit -> Distributed Sensor Unit 1 -> Distributed Sensor Unit 2 -> ... -> Distributed Sensor Unit 8

You can connect a maximum of 30 Sensor Amplifiers. (Refer to "2-2-2 Number of Connected Sensor Amplifiers" on page 2-3.)

You can connect a maximum of eight Distributed Sensor Units to the E3NW-ECT.

Input data allocation example

The following table lists the items that you can assign to the E3NW-ECT.

You can assign a maximum of 350 bytes of PDOs. (Refer to "7-2-3 Mode Setting Functions for PDO Communications" on page 7-6.) Refer to "A-1-5 PDO Mapping Object" on page A-7 for detailed object specifications.

Refer to the specific manual for your master for information on changing the PDO mappings.

Index	Transmit PDO mapping	Name	Size	A	pplicab	le Sens	or Amp	lifier Uni	its
1B00 hex	257th	Read input 1st Word	U16	FA□0	LA0	SA0	TA0	CA0	-
		(Bits 00 to 15)		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
1B01 hex	258th	Read input 2nd Word	U16	FA□0	LA0	SA0	TA0	CA0	-
		(Bits 16 to 31)		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
1B02 hex	259th	Read input 3rd Word	U16	FA□0	LA0	SA0	TA0	CA0	-
		(Bits 32 to 47)		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
1B03 hex	260th	Read input 4th Word	U16	FA□0	LA0	SA0	TA0	CA0	-
		(Bits 48 to 59)		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
1B04 hex	261st	Read input bits (Bits 00 to 15)	U16	FA□0	LA0	SA0	TA0	CA0	-
		Tread input bits (bits 00 to 15)		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
1B05 hex	262nd	Read input bits (Bits 16 to 31)	U16	FA□0	LA0	SA0	TA0	CA0	-
		Tread input bits (bits 10 to 31)		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
1B06 hex	263rd	Read input bits (Bits 32 to 47)	U16	FA□0	LA0	SA0	TA0	CA0	-
		Tread input bits (bits 32 to 47)		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
1B07 hex	264th	Read input bits (Bits 48 to 59)	U16	FA□0	LA0	SA0	TA0	CA0	-
		Tread input bits (bits 40 to 59)		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
1B08 hex	265th	Sensor Communications	U8	FA□0	LA0	SA0	TA0	CA0	-
		Status		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
1B09 hex	266th	8-bit Sensor Communications	U8	FA□0	LA0	SA0	TA0	CA0	-
		Status		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
1B0A hex	267th	Number of Sensors Setting	U16	FA□0	LA0	SA0	TA0	CA0	-
		Number of Sensors with		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
		Dummy							
1B0B hex	268th	Sensor Warning Status	U32	FA□0	LA0	SA0	TA0	CA0	-
		Serisor Warring Status		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
1B0D hex	270th	Sensor Warning Status 1 to 16	U16	FA□0	LA0	SA0	TA0	CA0	-
		Sensor Warning Status 1 to 10		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
1B10 hex	273rd	Unit 01 Detection Level of Input 1	INT16	FA□0	LA0	SA0	-	CA0	-
1B12 hex	274th	Unit 01 Detection Level of Input 2		MA0	FAH0	EA□0	-	-	-
1B48 hex	332nd	Unit 30 Detection Level of Input 2							

Index	Transmit PDO mapping	Name	Size	Applicable Sensor Amplifier Units					
1B4C hex	333rd	Unit 01 Threshold 1 Settings	INT32	FA□0	LA0	SA0	TA0	CA0	-
1B4D hex	334th	of Input 1		MA0	FAH0	EA□0	AA□0	VA□0	VD□0
1B4E hex	335th	Unit 01 Threshold 2 Settings							
		of Input 1							
1BA5 hex	422nd	Unit 01 Threshold 1 Settings							
		of Input 2							
		Unit 30 Threshold 1 Settings							
		of Input 2							
1BA6 hex	423rd	Unit 01 Detection Levels (4	INT32	-	-	-	TA0	-	-
1BA7 hex	424th	bytes)		-	-	-	AA□0	VA□0	VD□0
		Unit 02 Detection Levels (4							
1BC3 hex	452nd	bytes)							
		Unit 30 Detection Levels (4							
		bytes)							
1BFF hex	512nd	Sysmac Error Status	U8	FA□0	LA0	SA0	TA0	CA0	-
		Systilac Error Status		MA0	FAH0	EA□0	AA□0	VA□0	VD□0

^{*} The E9NC-TA0 is supported from E3NW-ECT Ver 1.03. The E3NX-CA0 is supported from E3NW-ECT Ver 1.06. E3NX-MA0, E2NC-EA $_{\square}$ 0, and E9NC-AA $_{\square}$ 0/VA $_{\square}$ 0/VD $_{\square}$ 0 are supported from Version 1.08 of the E3NW-ECT. You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)

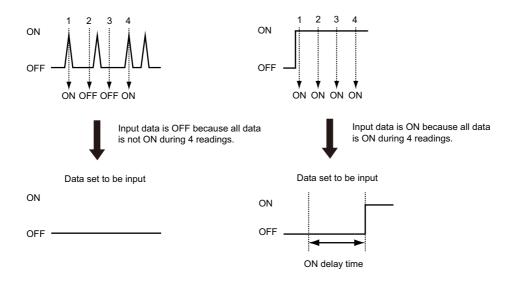
7-2 Functions of E3NW-ECT

Digital I/O Slave Units have the following convenient functions, in addition to the I/O signal processing.

7-2-1 Input Filter

Overview of functions

Purpose


This function prevents data changes and unstable data, which may be caused by fluctuation of input data and unstable contact state due to chattering and noise. This function is available in Free Run Mode.

Details of functions

This function reads inputs (ON/OFF) within a certain set time and turn ON the inputs if they are all same (all ON or all OFF), and turn them OFF if not.

Note that this function works for all inputs of Slave Units and Expansion Units at the same time.

When the input shifts from OFF to ON (or ON to OFF), it is read 4 times from that point at an interval of 1/4 of the set time. When all read results are ON (or OFF), the input is turned ON (or OFF).

Setting method

The input filter is set through SDO communications.

The applicable index is 3002 hex.

Refer to the applicable index (Input Filter in Free-Run Mode) in "A-1 Object Dictionary" on page A-2 for the set values.

7-2-2 **Dummy Sensor Setting**

Overview of functions

Purpose

This function provides keeping I/O map, when number of sensor change by customer option, sensing point degrees and so on.

Details of functions

E3NW-ECT can be set dummy sensor, so I/O map keep by using dummy sensor setting.

Setting method

The settings are made using the SDO communication.

The target index is 3004 hex.

For the set values, refer to the description of object index 3004 hex (Dummy Setting Object) in "A-1 Object Dictionary" on page A-2.

7-2-3 Mode Setting Functions for PDO Communications

Outline of Operation

Application

There are two modes for data refreshing with PDO communications. Select the mode based on the number of input data to assign for PDO communications and the refresh cycle.*

- * In this section, the refresh cycle applies to data in the Sensor Communication Unit. This is not the refresh cycle for data between the Sensor Communication Unit and the master.
- Normal Mode
 - In Normal Mode, the assigned inputs may not be refreshed every cycle, but you can assign a large amount of input data.
- Detection Level Speed Priority Mode
 - With this mode, you can assign less input data than with Normal Mode, but the assigned data, such as the detection levels, are refreshed every cycle.

In either mode, I/O data are refreshed every cycle.

Details of Functions

Normal Mode

This mode allows you to assign up to 350 bytes of input data.

The assigned input data (except for I/O data) are divided and refreshed in order across more than one cycle.

• Detection Level Speed Priority Mode

This mode allows you to assign up to 108 bytes of input data.

All assigned input data are refreshed every cycle.

The refresh cycle depends on the number of Sensors, amount of assigned data, and whether input filters and Dummy Sensors are used.

The refresh cycle for data in the Sensor Communications Unit for each mode is given in the following table.

• Free-Run Mode

Mode	Detection Level Speed Priority Mode				
Number of Sensors	30 max.	16 max.	30 max.	30 max.	30 max.
Assigned data size [bytes]	350	16 max.	36 max.	37 to 76	77 to 108
Input filter	With or without	None	With or without	With or without	With or without
Dummy Sensors	With or without	None	With or without	With or without	With or without
Refresh cycle [μs]	200	100	125	150	175

[•] DC Mode

The refresh cycle is the same as the output cycle of the Sync0 signal.

Setting Methods

The PDO communications mode is set through SDO communications.

The applicable index is 300C hex.

For the set values, refer to the description of object index 300C hex (TxPDO Mapping Mode) in "A-1 Object Dictionary" on page A-2.

7-2-4 **Automatic Detection of Connected Sensor Amplifiers**

Outline of Operation

Application

The Sensor Communication Unit and the Distributed Sensor Unit have a feature that automatically registers the number of connected Sensor Amplifiers. It is not necessary to register the number of Sensor Amplifiers with the Configuration Tool or through SDO communications in advance. (You can also manually register the number of Sensor Amplifiers with the Configuration Tool or through SDO communications.)

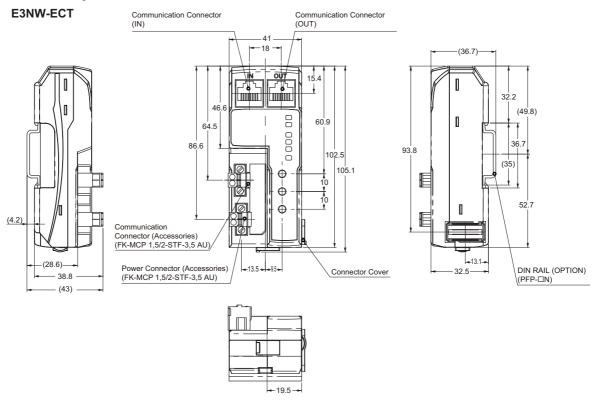
Details of Functions

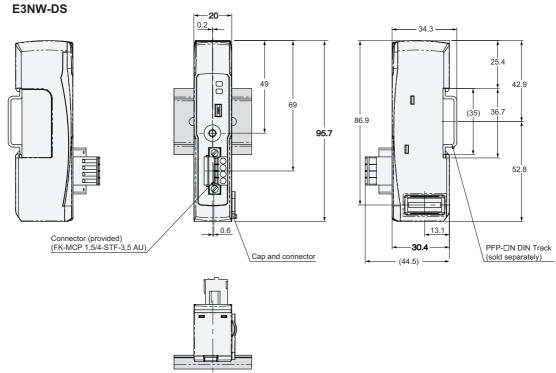
The Sensor Communication Unit and Distributed Sensor Unit detect the number of Sensor Amplifiers that are connected to them when the power supply is turned ON. This number is registered as the number of Sensor Amplifiers. It does not matter whether you turn ON the power supply to the Sensor Communication Unit or to the Distributed Sensor Units first. If the number of Sensor Amplifiers that are connected to the Sensor Communication Unit and Distributed Sensor Units changes after the power supply is turned ON (i.e., if the registered number disagrees with the connected number), an error occurs. Refer to Chapter 8 Troubleshooting and Maintenance for details.

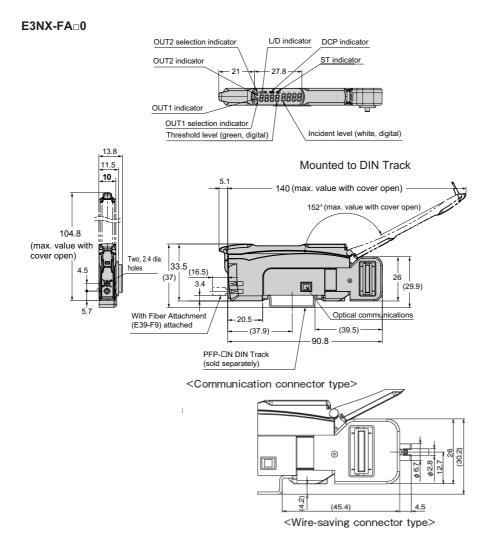
Precautions for Correct Use

If you need to add Sensor Amplifiers to the Sensor Communication Unit or to a Distributed Sensor Unit after the system begins operation, make sure to turn OFF the power supply to the Sensor Communication Unit and all Distributed Sensor Units.

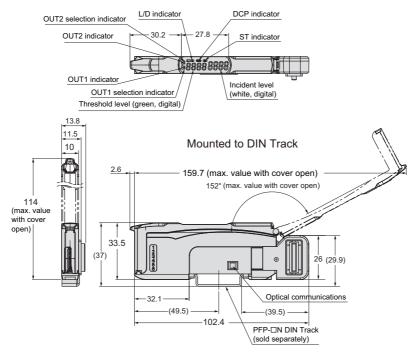
Setting Methods

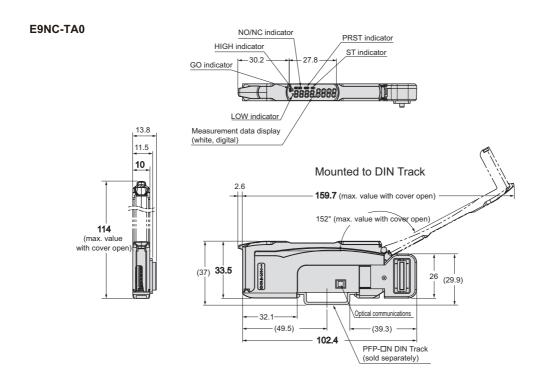

To manually register the number of Sensor Amplifiers, use SDO communications.


The applicable index is 3001 hex.

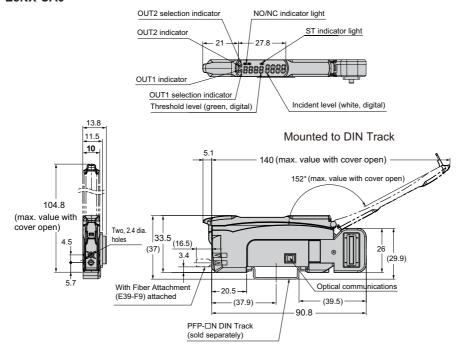

For the set values, refer to the description of object index 3001 hex (Number of Sensors) in "A-1 Object Dictionary" on page A-2.

7-3 Mounting Dimensions

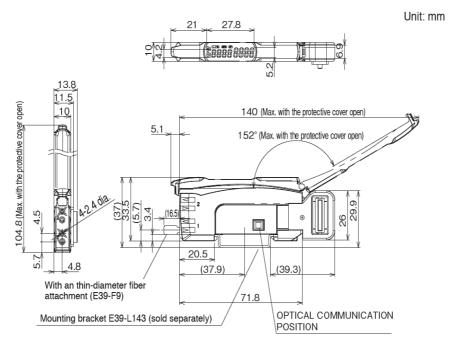

The mounting dimensions are shown below.



E3NC-LA0

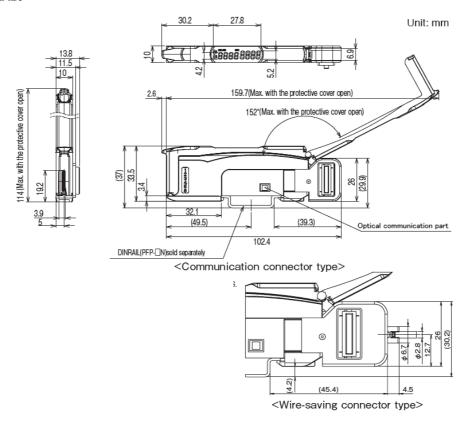


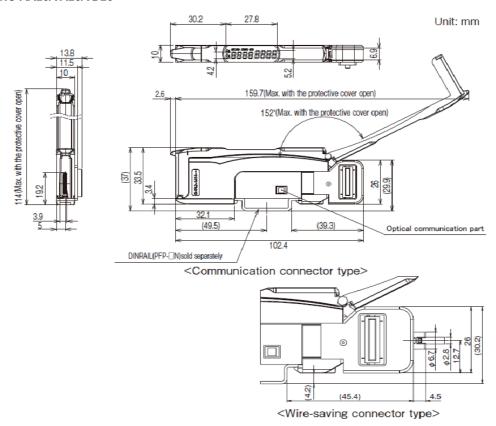
E3NC-SA0 ZERO indicator OUT2 selection indicator L/D indicator ST indicator OUT2 indicator (\$255 8888) OUT1 indicator Measurement value (white, digital) OUT1 selection indicator/ Threshold level 13.8 (green, digital) 11.5 Mounted to DIN Track 10 2.6 159.7 (max. value with cover open) 152° (max. value with cover open) 114 (max. value with cover open) 33.5 26 (29.9) Optical communications 32.1 (49.5) (39.5)-102.4 PFP-□N DIN Track



(sold separately)

E3NX-CA0


E3NX-MA0


E3NX-FAH0

* It is the same as E3NX-CA0

E2NC-EA□0

E9NC-AA0/VA0/VD0

Troubleshooting and Maintenance

This chapter explains actions to be taken at errors, troubleshooting, and equipment maintenance.

8-1	Troubl	eshooting	8-2
	8-1-1	Errors that Can be Checked with Status Indicator and Actions to Take	8-2
	8-1-2	Errors Unique to E3NW-ECT	8-6
	8-1-3	Error Notification Methods and Types	8-7
	8-1-4	Sysmac Error Status Codes	8-8
	8-1-5	Emergency Error Code	8-15
	8-1-6	Application Layer Status Codes	8-16
8-2	Equipr	nent Maintenance 8	3-18
	8-2-1	Cleaning	8-18
	8-2-2	Inspections	8-18
	8-2-3	Handling when Replacing Units	8-19

Troubleshooting

Errors that Can be Checked with Status Indicator and Actions to 8-1-1

Errors can be notified by status indicators on Slave Units.

In this section, the states of status indicator are indicated using the following abbreviations.

Abbreviation	Definition
On	ON
Off	OFF
F	Flickering (ON (50 ms) - OFF (50 ms) flashing)
В	Blinking (ON (200 ms) - OFF (200 ms) flashing)
SF	Single flash (ON (200 ms) - OFF (1000 ms) flashing)
_	Unknown

For details on definition of each state, refer to "6-3-1 Status Indicators" on page 6-4.

• Errors of Slave Unit

[PWR] indicator	[L/A IN] [L/A OUT] LED	[RUN] indicator	[ERR] indicator	Description	Cause	Actions
On	F	On	Off	EtherCAT communication is in progress.	_	PDO communications or both PDO and SDO communications are being executed. State is normal.
Off	Off	Off	Off	Power supply error	The power is not properly supplied to the Slave Unit.	After removing the following factors of power supply shutdown, restart the Slave Unit according to the specification of connected EtherCAT Master Unit. • Are the power supply cables wired correctly? • Are the power supply cables disconnected? • Is the power supply voltage within the specification range? • Is the power supply capacity sufficient? • Is the power supply malfunctioning?

[PWR] indicator	[L/A IN] [L/A OUT] LED	[RUN] indicator	[ERR] indicator	Description	Cause	Actions
On	_	Off	On F	Hardware error	A hardware failure occurred.	If the error does not clear even after the power is turned ON again, the Slave Unit hardware is damaged. Replace the Slave Unit.
				Illegal switch setting	A range setting switch or other switch setting is illegal.	Check the switch settings then restart the Slave Unit according to the specification of connected EtherCAT Master Unit.
On	_	_	В	Non-volatile memory data error	A non-volatile memory data error occurred.	Use the Configuration Tool or SDO communications to restore the default data and restart the Slave Unit according to the specification of connected EtherCAT Master Unit.
				Sync manager setting error	The sync manager setting is illegal.	Change to the correct settings.
				Hardware error	A hardware failure occurred.	If the problem is not resolved even after the measures described above are taken, the Slave Unit hardware may be damaged. Replace the applicable Slave Unit.

Errors of EtherCAT Network

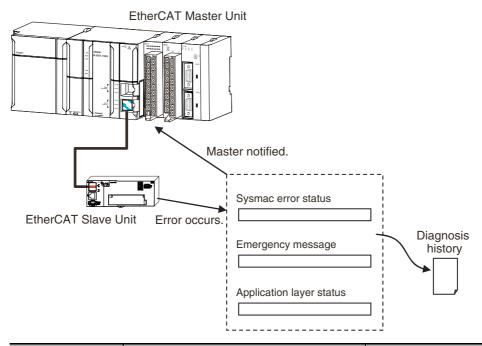
[PWR] indicator	[L/A IN] [L/A OUT] LED	[RUN] indicator	[ERR] indicator	Description	Cause	Actions
On	On	_	_	Link established in physical layer	Operation standby status after establishing link in physical layer.	_
On	Off			Link not established in	A link in physical layer has not been established.	After checking the following items, restart the Slave Unit according to the specification of connected EtherCAT Master Unit. • Is the communications cable wired correctly? • Are any cables disconnected or loose in the part that connects to the connector? • Is the cable length appropriate? • Is the communications cable of the recommended specification?
	Off			physical layer	The host master has not been started.	Check that EtherCAT Master Unit is operating correctly. If using an OMRON EtherCAT Master Unit, check the EtherCAT Master Unit mode and Slave Unit node addresses. If using EtherCAT Master Unit from another manufacturer, refer to the user's manual for that Master Unit.
					A hardware failure occurred.	If the problem is not resolved even after the measures described above are taken, the Slave Unit hardware may be damaged. Replace the applicable Slave Unit.

[PWR] indicator	[L/A IN] [L/A OUT] LED	[RUN] indicator	[ERR] indicator	Description	Cause	Actions
On	-	SF	_	Safe- Operational state	It is commanded from the EtherCAT Master Unit to shift to the Safe-Operational state.	If the trouble conjured
On	_	В	_	Pre- Operational state	It is commanded from the EtherCAT Master Unit to shift to the Pre-Operational state.	If the trouble occurred during operating the system, check the state of the connected EtherCAT Master Unit.
On	-	Off	_	Init state	It is commanded from the EtherCAT Master Unit to shift to the Init state.	

^{*} Due to the EtherCAT specification, a communication timeout does not occur with those Slave Units that only handle input data.

• Synchronization Errors

[PWR] indicator	[L/A IN] [L/A OUT] LED	[RUN] indicator	[ERR] indicator	Description	Actions
On	_	В	В	Synchronization frequency (Sync0 frequency) setting error	After checking the following items, restart the Slave Unit according to the specification of connected EtherCAT Master Unit. • Set the correct synchronization frequency.
On	_	В	SF	Synchronization error (at synchronization start)	After checking the following items, restart the Slave Unit according to the specification of connected EtherCAT Master Unit. • Is the communications cable wired correctly? • Is the communications cable exposed to excessive noise? • Review set time of Sync Not Received Timeout Setting (synchronization error setting).
On	_	SF	SF	Communications synchronization error	After checking the following items, restart the Slave Unit according to the specification of connected EtherCAT Master Unit. • Is the communications cable wired correctly? • Is the communications cable exposed to excessive noise? • Review set time of Communication Error Setting.


[PWR] indicator	[L/A IN] [L/A OUT] LED	[RUN] indicator	[ERR] indicator	Description	Actions
On	_	SF	SF	Synchronization error (in operation)	After checking the following items, restart the Slave Unit according to the specification of connected EtherCAT Master Unit. • Is the communications cable wired correctly? • Is the communications cable exposed to excessive noise? If this does not improve, the Slave Unit hardware may be damaged. Replace the applicable Slave Unit.

8-1-2 **Errors Unique to E3NW-ECT**

Symptom	Cause	Measures
Some functions are not reflected even after parameters have been set.	The functions enabled by recycling the power were changed.	Turn ON Slave Unit power supply again after changing the setting.
The Sensor Amplifier is turned ON but there is no input.	There is a communications error.	Check the connected number of sensors.
but there is no input.	The SS indicator is lit red.	See below.
		Check the connected number of sensors.
		When use dummy sensor setting, Set number of sensors setting as include dummy sensors.
SS LED lights red	Number of sensors setting is different from Number of	Amplifier connecting is wrong, Check the connecting of E3NW-ECT and amplifiers. If there is vibration or other movement, use end plates on
<u>-</u>	connecting sensors	Amplifier Units. Make sure the hole for optical communications is not blocked.
		The connected Sensor Amplifier Units failed. Replace with the Units.
		There is an error in the connections to the Distributed Sensor Unit.
		Check the installation procedure for the Distributed Sensor Unit.

8-1-3 Error Notification Methods and Types

This section describes the notification methods for errors that occur in the Slave Units.

Error notification type	Description	Notification method	Page
Sysmac error status	Notification is provided when an error is detected in the application. These errors are displayed only on the OMRON Sysmac Studio Support Software.	Error status is received by the TxPDO and the master is notified of errors every cycle.	8-8
Emergency messages	Notification is provided of application-level errors. Either CiA-defined error codes are used or error codes are added to vendor-specific areas.	The slave notifies the master when an error occurs.	8-15
Application layer status	Notification is provided of errors in EtherCAT communications. The error notification method and error codes that are defined by ETG are used.	The master is notified by writing to the application layer status register when an error occurs.	8-16

Sysmac Error Status Codes 8-1-4

A table that describes the error event codes that are displayed on the Sysmac Studio is given below.

Error List

The errors (i.e., events) that can occur in the E3NW-ECT EtherCAT Slave Unit are given on the following pages. Event levels are given as following in the tables:

Maj: Major fault level Prt: Partial fault level Min: Minor fault level Obs: Observation Info: Information

Refer to the NJ-series Troubleshooting Manual (Cat. No. W503) for all of the event codes that may

occur in an NJ-series Controller.

Event code	Event name	Magning	Assumed sous			Leve			Reference
Event code	Event name	Meaning	Assumed cause	Maj	Prt	Min	Obs	Info	Reference
04C40000 hex	Sensor Com- munications Error	An error occurred in a Sensor connection.	The Sensor is disconnected.			1			8-10
04C50000 hex	Sensor Com- munications Has Not Been Estab- lished	Communications has not been established with the Sensor.	A sensor is not connected.			V			8-10
14A00000 hex	Non-volatile Memory Checksum Error	An error occurred in the control parameters.	Noise			√			8-11
247A 0000 hex	Number of Distributed Sensor Unit Verify Error	The number of Distributed Sensor Unit that is checked at power up is decreased.	The Distributed Sensor Unit is disconnected			V			8-11
247B 0000 hex	Number of Sensors Over Limit	Too many Sensors are connected.	More than the maximum num- ber of Sensors are connected.			1			8-12
247C 0000 hex	Number of Sensors Ver- ify Error	The number of Sensors that is connected does not agree with the settings.	The set value does not match the number of Sensors that are actually connected			V			8-12
247D 0000 hex	Number of Sensors Over at Dis- tributed Sen- sor Unit	Too many Sensors are connected at Distributed Sensor Unit.	More than the maximum num- ber of Sensors are connected at Distributed Sensor Unit.			V			8-13
34F80000 hex	Dummy Sensors Setting Error	Too many Dummy Units are set.	There are too many Dummy Units set, so some Sensors are not assigned logical unit num- bers.			√			8-13
04A10000 hex	Non-volatile Memory Hardware Error	An error occurred in non-volatile memory.	Non-volatile memory failure				√		8-14

Error Description

This section describes the information that is given for individual errors.

Controller Error Descriptions

The items that are used to describe individual errors (events) are described in the following copy of an error table.

Event name	Gives the name o	f the error (event).		Event code	Gives the code of	the error (event).			
Meaning	Gives a short des	cription of the error (e	event).		•				
Source	t		Gives details on the source of the error.	Detection timing	Tells when the error is detected.				
Error attributes	Level	Tells the influence on control.*1	Recovery	Gives the recovery method.*2	Log category	Tells which log the error is saved in.*3			
Effects	User program	Tells what will happen to execution of the user program.*4	Operation	Provides special information on the operation that results from the error (event).					
Indicators		of the built-in EtherNe CAT Master Function	•	•		us is given only for			
System-defined	Variable		Data type		Name	Name			
variables	Lists the variable names, data types, and meanings for system-defined variables that provide direct error notification, that are directly affected by the error, or that contain settings that cause the error.								
Cause and	Assumed cause		Remedy		Prevention				
correction	Lists the possible	Lists the possible causes, remedies, and preventive measures for the error (event).							
Attached information	Provides the addi	tional information tha	t is displayed by the	e Sysmac Studio or a	n NS-series PT.				
Precautions/ Remarks	Provides precauti	ons, restrictions, and	supplemental infor	mation.					

*1 One of the following:

Major fault: Major fault level Partial fault: Partial fault level Minor fault: Minor fault level Observation

Observation Information

*2 One of the following:

Automatic recovery: Normal status is restored automatically when the cause of the error is removed.

Error reset: Normal status is restored when the error is reset after the cause of the error is removed.

Cycle the power supply: Normal status is restored when the power supply to the Controller is turned OFF and then back ON after the cause of the error is removed.

Controller reset: Normal status is restored when the Controller is reset after the cause of the error is removed.

Depends on cause: The recovery method depends on the cause of the error.

*3 One of the following:

System: System event log Access: Access event log

*4 One of the following:

Continues: Execution of the user program will continue.

Stops: Execution of the user program stops. Starts: Execution of the user program starts.

• Error Descriptions

Event name	Sensor Communications Error Event code		Event code	04C40000 hex				
Meaning	An error occurred	in a Sensor connect	tion.					
Source	EtherCAT Master	Function Module	Source details	Slave	Detection timing	Continuously		
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling the power)	Log category	System		
Effects	User program	Continues.	Operation	Input is not possib be 0.	le from the Sensor.	The input data will		
Indicators	EtherCAT NET RUN EtherCAT NET ERR		EtherCAT LINK/AG	СТ				
System-defined	Variable		Data type		Name			
variables	None							
Cause and	Assumed cause		Correction		Prevention			
correction	The Sensor is disc	connected.	Connect the Sens the power supply.	sor again and cycle	Connect the Sense	or securely.		
Attached information	None	None						
Precautions/ Remarks	None							
Event name	Sensor Communic	cations Has Not Bee	n Established	Event code	04C50000 hex			
Meaning	Communications I	nas not been establis	shed with the Senso	or.				
Source	EtherCAT Master	Function Module	Source details	Slave	Detection timing	When establishing communications after turning ON power to the slave.		
Error attributes	Level	Minor fault	Recovery	Error reset (after automatic slave recovery)	Log category	System		
Effects	User program	Continues.	Operation	The input data will ational state cannot	be 0. Safe-operation of be entered.	nal state and Oper-		
Indicators	EtherCAT NET RU	N	EtherCAT NET El	RR	EtherCAT LINK/AC	CT		
System-defined	Variable		Data type		Name			
variables	None							
Cause and	Assumed cause		Correction		Prevention			
correction	A sensor is not co	nnected.	Connect at least of	one Sensor.	Connect at least one Sensor.			
	I	-		·	-			

Attached

Remarks

information

None

Event name	Non-volatile Memo	ory Checksum Error		Event code	14A00000 hex		
Meaning	An error occurred	in the control param	neters.				
Source	EtherCAT Master	Function Module	Source details	Source details Slave t		When establishing communications after turning ON power to the slave	
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling slave power)	Log category	System	
Effects	User program	Continues.	Operation The slave's I/O communications stop and the output OFF.			and the outputs turn	
Indicators	EtherCAT NET RU	JN	EtherCAT NET ERR		EtherCAT LINK/ACT		
			Flashes at 1-s intervals.				
System-defined	Variable		Data type	Data type		Name	
variables	None						
Cause and	Assumed cause		Correction		Prevention		
correction	Noise	Noise		Return the control parameters to their default settings using restore parameters (1011 hex) of the EtherCAT Slave.		Implement noise countermeasures.	
Attached information	None		,				
Precautions/ Remarks	None						
Event name	Number of Distribu	uted Sensor Unit Ve	rify Error	Event code	247A0000 hex		
Meaning	The number of Dis	stributed Sensor Un	t that is checked at p	oower up is decrease	ed.		
Source	EtherCAT Master	Function Module	Source details	<u> </u>		When establishing communications	
Error attributes	Level	Minor fault	Recovery	Error reset (after	Log category	System	

			,				
Meaning	The number of Dis	tributed Sensor Unit	that is checked at p	ower up is decrease	ed.		
Source	EtherCAT Master Function Module				Detection timing	When establishing communications	
Error attributes	Level	Minor fault	Recovery Error reset (after automatic slave recovery)		Log category	System	
Effects	User program	Continues.	Operation Operation continues are actually connect		s with the Distributed Sensor Units that cted.		
Indicators	EtherCAT NET RUN		EtherCAT NET ERR		EtherCAT LINK/ACT		
System-defined	Variable	Variable		Data type		Name	
variables	None						
Cause and	Assumed cause		Correction		Prevention		
correction	The Distributed Senected.	The Distributed Sensor Unit is disconnected.		Connect the Sensor securely.		Connect the Sensor securely.	
Attached information	None	None					
Precautions/ Remarks	The case that the	number of Distribute	d Sensor Unit is inc	reased is not applica	able.		

Event name	Number of Senso	rs Over Limit		Event code	247B0000 hex	247B0000 hex	
Meaning	Too many Sensors	s are connected.					
Source	EtherCAT Master		Source details	Slave	Detection timing	Continuously	
Error attributes	Level	Minor fault	Recovery	Error reset (after automatic slave recovery)	Log category	System	
Effects	User program	Continues.	Operation		e communications a	ate. I/O communica- re not possible for	
Indicators	EtherCAT NET RU	JN	EtherCAT NET E	RR	EtherCAT LINK/A	СТ	
System-defined	Variable		Data type		Name		
variables	None						
Cause and	Assumed cause		Correction		Prevention		
correction	More than the maximum number of Sensors are connected.		the error is remo	s when the cause of ved and communica- vant slave recover. error in the Control-	Do not connect moment mum number of S	ore than the maxi- ensors.	
Attached information	None						
Precautions/ Remarks	None						
Event name	Number of Sensor	rs Verify Error		Event code			
Meaning	The number of Se	ensors that is connec	cted does not agree	with the settings.			
Source	EtherCAT Master	Function Module	Source details	Slave	Detection Continuously timing		
Error attributes	Level	Minor fault	Recovery	Error reset (after cycling the power)	Log category	System	
Effects	User program	Continues.	Operation	Operation continue connected.	es with the Sensors	that are actually	
Indicators	EtherCAT NET RU	N	EtherCAT NET E	RR	EtherCAT LINK/A	СТ	
System-defined	Variable		Data type		Name		
variables	None						
Cause and	Assumed cause		Correction		Prevention		
correction	number of Sensors that are actually connected.		nected Sensors the set value. If it sors that are cor- correct the Sens cycle the power of Sensors are di- necting Distribut	If the setting of the number of con- nected Sensors is incorrect, correct the set value. If the number of Sen- sors that are connected is incorrect, correct the Sensor connections and cycle the power supply. If the number of Sensors are decreased in discon- necting Distributed Sensor Unit, re-connect the Distributed Sensor		Make sure that the setting of the number of connected Sensors agrees with the number of Sensors that are actually connected.	
Attached	None				1		

Precautions/

The case that the number of Sensors is decreased in disconnecting Distributed Sensor Unit is applicable. The case that the number of Sensors is increased in connecting Distributed Sensor Unit is not applicable.

Event name	Number of Sensor	s Over at Distributed	Sensor Unit	Event code	247D 0000 hex	
Meaning	Too many Sensors	are connected at D	istributed Sensor Ur	nit.		
Source	EtherCAT Master	Function Module	Source details	Slave	Detection timing	Continuously
Error attributes	Level	Minor fault	Recovery Error reset (after automatic slave recovery)		Log category	System
Effects	User program	Continues.	Operation I/O communications and message communications not possible for the Sensors with relevant Distribute sor Unit.			
Indicators	EtherCAT NET RUN		EtherCAT NET ER	RR	EtherCAT LINK/AC	CT
System-defined	Variable		Data type		Name	
variables	None					
Cause and	Assumed cause		Correction		Prevention	
correction	More than the max Sensors are conne Sensor Unit.	kimum number of ected at Distributed	Reduce the number of Sensors at relevant Distributed Sensor Unit to less than the maximum number of Sensors at Distributed Sensor Unit.		Do not connect more than the maximum number of Sensors at Distributed Sensor Unit.	
Attached information	None					
Precautions/ Remarks	None					
Event name	Dummy Sensors S	Setting Error		Event code	34F80000 hex	
Meaning	Too many Dummy	Units are set.			•	
Source	EtherCAT Master	Function Module	Source details	Slave	Detection timing	When establish ing communications
Error attributes	Level	Minor fault	Recovery	Errors reset	Log category	System

Event name	Dummy Sensors Setting Error			Event code	34F80000 nex		
Meaning	Too many Dummy	Units are set.					
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	When establishing communications	
Error attributes	Level	Minor fault	Recovery	Errors reset	Log category	System	
Effects	User program	Continues.	Operation	Not affected.			
Indicators	EtherCAT NET RUN EtherCAT N		EtherCAT NET ER	R	EtherCAT LINK/AC	T	
						_	
System-defined	Variable		Data type		Name		
variables	None						
Cause and	Assumed cause		Correction		Prevention		
correction	There are too many Dummy Units set, so some Sensors are not assigned logical unit numbers.		Reduce the number of Dummy Units that is set in the dummy function settings so that logical unit numbers can be assigned to all connected Sensors, and then change the Sensors from the Init state to Pre-operational state or restart the Sensors.		Set Dummy Units numbers can be a sor Amplifiers that	ssigned to all Sen-	
Attached information	None			<u> </u>			
Precautions/ Remarks	None						

Event name	Non-volatile Memo	ory Hardware Error		Event code	04A10000 hex		
Meaning	An error occurred	An error occurred in non-volatile memory.					
Source	EtherCAT Master Function Module		Source details	Slave	Detection timing	When establishing communications after turning ON power to the slave	
Error attributes	Level	Observation	Recovery		Log category	System	
Effects	User program	Continues.	Operation	Non-volatile memo	ry cannot be written.		
Indicators	EtherCAT NET RU	IN	EtherCAT NET ERR		EtherCAT LINK/ACT		
System-defined	Variable	Variable		Data type		Name	
variables	None						
Cause and	Assumed cause		Correction		Prevention		
correction	Non-volatile memory failure		Replace the EtherCAT Communications Unit or the EtherCAT slave.		None		
Attached information	None	None					
Precautions/ Remarks	This error is not re	corded in the error lo	og of the slave.				

8-1-5 Emergency Error Code

The table below shows types of emergency error codes used in E3NW-ECT EtherCAT Sensor Communication Units and corresponding error contents.

Error codes common to E3NW-ECT EtherCAT Sensor Communication Units

Error code	Name of error	Contents	Diagnosis history	Notification to EtherCAT Master Unit	Measures
5530 hex	Non-volatile Memory Hardware Error	A timeout was detected when writing data to non-volatile memory during EtherCAT communications.	Not saved	Can be notified	Write the data again.
6140 hex	Slave Unit Verification Error	At turning ON the power supply, a verification error occurred on the Slave Unit information stored in the Slave Unit.	Saved	Cannot be notified	If the error occurs even after restarting the power supply, the Slave Unit is damaged. Replace the Slave Unit.
6330 hex	Non-volatile Memory Checksum Error	An error occurred in non-volatile memory data in the Slave Unit.	Saved	Can be notified	A non-volatile memory data error occurred. Initialize non-volatile memory from a Configuration Tool or with SDO communications, and then restart the Slave Unit. (Target indexes: 1011 hex Restore default parameters (parameter restore))
7030 hex	Slave Hardware Error	A hardware error occurred in the EtherCAT communications area.	Saved	Cannot be notified	If the error occurs even after restarting the power supply, the Slave Units is damaged. Replace the Slave Units.

8-1-6 **Application Layer Status Codes**

The AL status codes that are used by the E3NW-ECT EtherCAT Sensor Communication Units are described in the following table.

AL status codes of E3NW-ECT EtherCAT Sensor Communication

AL status code	Name of error	Contents	Diagnosis history	Notification to EtherCAT Master Unit	Measures
0001 hex	Non-volatile Memory Control Data Error	An error was detected in non-volatile memory data in the Slave Unit.	Saved	Can be notified	Initialize non-volatile memory (execute restore parameter), and then restart the Slave Unit.
0011 hex	Illegal State Transition Request Received	An illegal state transition request was received.	Not saved	Can be notified	None
0012 hex	Error State Transition Received	A transition request to an unknown state was received.	Not saved	Can be notified	None
0014 hex	Slave Unit Verification Error	A verification error occurred in the slave information stored in the Slave Units when the power supply was turned ON.	Saved	Can be notified	If cycling the power supply does not solve the problem, the Slave Unit has failed. Replace the Slave Unit.
0016 hex	Mailbox Setting Error	An incorrect setting was detected in the mailbox of the Sync Manager.	Not saved	Can be notified	Check the mailbox settings in the Master Unit.
001B hex	Process Data WDT Error	A timeout was detected for an I/O data transmission frame.	Not saved	Can be notified	Check the WDT settings in the Master Unit.
001D hex	RxPDO Setting Error	An error was detected in the RxPDO settings (e.g., a logic setting error in the Sync Manager).	Not saved	Can be notified	Check the Sync Manager settings in the Master Unit.
001E hex	TxPDO Setting Error	An error was detected in the TxPDO settings (e.g., a logic setting error in the Sync Manager).	Not saved	Can be notified	Check the Sync Manager settings in the Master Unit.
001F hex	PDO WDT Setting Error	An incorrect PDO WDT setting was detected.	Not saved	Can be notified	Check the WDT settings in the Master Unit.
0024 hex	TxPDO Assignment Error	An incorrect TxPDO setting was made (e.g., an index, subindex, or size that is out of range was registered).	Not saved	Can be notified	Check the TxPDO assignment settings in the Master Unit.
0025 hex	RxPDO Assignment Error	An incorrect RxPDO setting was made (e.g., an index, subindex, or size that is out of range was registered).	Not saved	Can be notified	Check the RxPDO assignment settings in the Master Unit.

AL status code	Name of error	Contents	Diagnosis history	Notification to EtherCAT Master Unit	Measures
002C hex	Synchronization Error	The SYNC0 interrupt stopped during operation in Operational state.	Not saved	Can be notified	Check the synchronization settings. (Encoder Input Slave Units only)
002D hex	SYNC Signal Not Received	No SYNC0 signals have been received since entering DC mode.	Not saved	Can be notified	Check the synchronization settings. (Encoder Input Slave Units only)

Equipment Maintenance 8-2

This section describes routine equipment maintenance, in particular cleaning methods, inspection methods, and handling methods when replacing Slave Units.

8-2-1 Cleaning

Perform the following cleaning regularly to ensure the equipment is kept in the best condition possible.

- Wipe the equipment over with a soft, dry cloth when doing daily cleaning.
- · If dirt remains even after wiping with a soft, dry cloth, wipe over with a cloth that has been wet with a sufficiently diluted detergent (2%) and wrung dry.
- · Units will become stained if items such as rubber or vinyl products or adhesive tape are left on the Unit for a long period. Remove such items during regular cleaning.

Precautions for Correct Use

Never use benzene, thinners, or other volatile solvents, or chemical cloths. The unit coating may change if these products are used.

8-2-2 Inspections

Always perform periodic inspections to ensure the equipment is kept in the best possible condition. Periodic inspections should occur every 6 months to a year.

Periodic inspections should occur more frequently, however, for Units that are used in environments subject to high temperatures, high humidity, or a lot of dust.

Materials required for inspections

The following materials are required to perform periodic inspections.

Materials used regularly

- · Phillips screwdrivers and flat-blade screwdrivers
- · Screwdrivers for communications connectors
- Testers (or digital voltmeters)
- · Industrial alcohol and pure cotton cloth

Materials sometimes required

- Synchroscope
- · Pen oscilloscope
- · Thermometer and hygrometer

Inspection item

Periodically inspect the following items to ensure that they do not deviate from the criteria. If the items deviate from the criteria, adjust the environment so the criteria are met or adjust the Unit itself.

Inspection item	Inspection details	Criteria	Inspection method
	Are the ambient and in-panel temperatures appropriate?	0 to 55°C	Thermometer
Environment	Is the ambient and in-panel humidity appropriate?	25% to 85% (with no condensation or icing)	Hygrometer
	Has dust collected?	No dust	Visual inspection
Installation	Has the Slave Unit been secured?	No looseness	Phillips screwdriver
	Are the communications cable connectors inserted properly?	No looseness	Visual inspection
	Are the external wiring screws loose?	No looseness	Phillips screwdriver
	Are the connection cables damaged?	No visible damage	Visual inspection

8-2-3 Handling when Replacing Units

Networks are constructed from an EtherCAT Master Unit and Slave Units.

If a Unit is malfunctioning, the entire network will be affected. The malfunctioning Unit must be replaced quickly.

To restore network functions as quickly as possible, it is recommended that spare Units are kept on hand ready to replace malfunctioning Units immediately.

Precautions when replacing Units

Heed the following precautions when replacing nodes after a periodic inspection has revealed a problem.

- Check that the new Unit does not have errors after replacement.
- If returning malfunctioning devices for repair, attach a detailed description of the malfunction to the
 device and send the device to the OMRON representative listed at the end of this manual or to your
 OMRON representative.
- If contacts are defective, wipe them with a clean pure cotton cloth that has been soaked in industrial alcohol.

Settings after Unit replacement

After replacing a Unit, make the switch and other settings the same as before the Unit was replaced.

Appendices

A-1	Object	Dictionary	A-2
	A-1-1	Object Dictionary Area	
	A-1-2	Data Types	
	A-1-3	Object Description Format	
	A-1-4	Communication Objects	
	A-1-5	PDO Mapping Object	
	A-1-6	Sync Manager Communication Object	
	A-1-7	Manufacturer Specific Objects	
A-2	Using	Distributed Sensor Units	A-52
	A-2-1	Models of Sensor Amplifiers That Can Be Connected to Distributed	
		Sensor Units	A-52
	A-2-2	Mounting and Removing Distributed Sensor Units	
	A-2-3	DS-Bus Network Wiring	
	A-2-4	Power Supply Specifications and Connections of the Distributed	
		Sensor Unit	A-58
	A-2-5	General Specifications of the Distributed Sensor Unit	
	A-2-6	Hardware Specifications of the Distributed Sensor Unit	
B-1	Termir	ology	B-1

Object Dictionary

Object Dictionary Area A-1-1

The CAN application protocol over EtherCAT (CoE) protocol uses the object dictionary of CAN application protocol as its base. Each object is assigned with an index of four-digit hexadecimal value. The indexes are configured in the areas below.

Indexes	Area	Contents
0000 hex-0FFF hex	Data Type area	Definitions of data types
1000 hex-1FFF hex	CoE Communications area	Definitions of variables that can be used by all
1000 Hex-IIII Hex	COL COMMUNICATIONS area	servers for designated communications
2000 hex-2FFF hex	Manufacturer Specific area 1	Variables defined for all OMRON products
3000 hex-5FFF hex	Manufacturer Specific area 2	Variables defined for E3NW-ECT EtherCAT Sensor
3000 nex-orrr nex	Manufacturer Specific area 2	Communication Units
		Variables defined for CiA401 generic I/O module
6000 hex-9FFF hex	Device Profile area	device profiles (profile specifying the CAN
0000 Hex-SELL Hex	Device Fibilie alea	application protocol interface for devices with digital
		I/Os and analog I/Os)
A000 hex-FFFF hex	Reserved area	Area reserved for future use

A-1-2 **Data Types**

This profile uses the following data types.

Data Types	Code	Size	Range
Boolean	BOOL	1 bit	true(1), false(0)
Unsigned8	U8	1 byte	0 to 255
Unsigned16	U16	2 bytes	0 to 65535
Unsigned32	U32	4 bytes	0 to 4294967295
Unsigned64	U64	8 bytes	0 to 18446744073709551615
Integer8	INT8	1 byte	-128 to 127
Integer16	INT16	2 bytes	-32768 to 32767
Integer32	INT32	4 bytes	-2147483648 to 2147483647
Visible string	VS		

A-1-3 Object Description Format

In this manual, objects are described in the following format.

Object description format

<index></index>	<object name=""></object>					
Range: <setting ra<="" td=""><td>nge></td><td>Unit:</td><td><unit></unit></td><td>Default: <default setting=""></default></td><td></td><td>Attribute: <data attribute=""></data></td></setting>	nge>	Unit:	<unit></unit>	Default: <default setting=""></default>		Attribute: <data attribute=""></data>
Size: <size></size>		Access: <access></access>		PDO map: <	Possible/Not possible>	

Object description format with Sub-indexes

<index></index>	<object name=""></object>					
Sub-index 0						
Range: <setting r<="" td=""><td>ange></td><td>Unit:</td><td><unit></unit></td><td>Default: <default setting=""></default></td><td></td><td>Attribute: <data attribute=""></data></td></setting>	ange>	Unit:	<unit></unit>	Default: <default setting=""></default>		Attribute: <data attribute=""></data>
Size: <size></size>	Size: <size></size>				PDO map: <	Possible/Not possible>
•						
•						
•						
Sub-index N						
Range: <setting r<="" td=""><td colspan="2">Range: <setting range=""> Unit: <uni< td=""><td><unit></unit></td><td colspan="2">Unit> Default: <default setting=""></default></td><td>Attribute: <data attribute=""></data></td></uni<></setting></td></setting>	Range: <setting range=""> Unit: <uni< td=""><td><unit></unit></td><td colspan="2">Unit> Default: <default setting=""></default></td><td>Attribute: <data attribute=""></data></td></uni<></setting>		<unit></unit>	Unit> Default: <default setting=""></default>		Attribute: <data attribute=""></data>
Size: <size></size>	Size: <size></size>		Access: <access></access>		PDO map: <possible not="" possible=""></possible>	

The following values are indicated within the pointed brackets <>.

Indexes : An object index given by a four-digit hexadecimal number

Object name : The object name

Range : The possible Range of settings

Unit : Physical unit

Default : Default value set before product shipment

Attribute : The timing when a change is updated in a writable object

A: Always enabled

B: Timing of count stop \rightarrow operation (Encoder Input Slave Unit only)

C: Timing of pre-operational state \rightarrow safe-operational state

D: Timing of pre-operational state \rightarrow init state R: Updated after the power supply is reset

-: Read only

Size : The object size is given in bytes

Access : Indicates whether the object is read only, or read and write

RO: Read only

RW: Read and write

PDO map : Indicates the PDO mapping possibility

A-1-4 Communication Objects

1000 hex	Device Type					
Range: –		Unit: -	_	Default: 00010191 hex		Attribute: -
Size: 4 bytes (U32)			Access: RO		PDO map: N	lot possible

• Indicates the CoE device profile number.

1001 hex	Error Register					
Range: -		Unit: -	=	Default: 00 hex		Attribute: -
Size: 1 byte (U8)			Access: RO		PDO map: N	lot possible

• Indicates the error type that occurs in a Slave Unit.

Bits	Name	Bits	Name
0	Generic error	4	Communications error
1	Current error	5	Device profile specific error
2	Voltage error	6	(Reserved)
3	Temperature error	7	Manufacturer specific error

1008 hex	Manufacturer Device Name					
Range: –	U	Init: –	Default: Differ by Slave Un	it types*	Attribute: –	
Size: 20 bytes (VS)		Access: RO		PDO map: N	lot possible	
م المصل	ataa tha Clava I lait	t manadal muumaham	"CONNAL COT"	, /10 a al al a al 11	with 10 analys	

• Indicates the Slave Unit model number. "E3NW-ECT" (padded with 12 spaces)

1009 hex	Manufacturer Hardware Version					
Range: – Unit: –		_	Default: Differ by Slave Unit types*		Attribute: –	
Size: 20 bytes (VS)		Access: RO		PDO map: N	lot possible	

• Indicates the version of the Slave Unit hardware.

100A hex	Manufacturer Software Version					
Range: –		Unit: –		Default: Differ by Slave Unit types*		Attribute: -
Size: 20 bytes (VS)		Access: RO		PDO map: Not possible		

[•] Indicates the version of the Slave Unit software.

1011 hex Rest	Restore Default Parameters						
Sub-index 0: Number of entries							
Range: –	Unit:	_	Default: 01 hex		Attribute: –		
Size: 1 byte (U8)	Size: 1 byte (U8)		Access: RO		Not possible		
Sub-index 1: Restore Defa	ault Parameters						
Range: -	Unit:	_	Default: 00000001 hex		Attribute: A		
Size: 4 bytes (U32) Access: RW			PDO map: N	Not possible			

- Resets the parameters to their default values.
- The parameter is reset only when a specific value is written to Sub-index 1. This prevents parameter values from being accidentally overwritten.
- The specific value is "load".

MSB						
d	а	0	I			
64 hex	61 hex	6F hex	6C hex			

- The ABORT code is displayed if a value other than the specific is written.
- A value 00000001 hex (command valid) is indicated when reading.

1018 hex	Identity Object	Identity Object						
Sub-index 0: N	umber of entries							
Range: -		Unit: –	Default: 04 hex		Attribute: -			
Size: 1 byte (U	8)	Access: RO		PDO map	Not possible			
Sub-index 1: Ve	endor ID			•				
Range: –		Unit: –	Default: 0000008	83 hex	Attribute: -			
Size: 4 bytes (l	J32)	Access: RO		PDO map	Not possible			
Sub-index 2: Pi	roduct Code							
Range: –		Unit: –	Default: 0000001	F9 hex	Attribute: -			
Size: 4 bytes (l	J32)	Access: RO		PDO map: Not possible				
Sub-index 3: R	evision Number							
Range: –		Unit: –	Default: Differ by	Slave Unit types*	Attribute: -			
Size: 4 bytes (l	J32)	Access: RO		PDO map	Not possible			
Sub-index 4: Se	erial Number							
Range: –		Unit: –	Default: Differ by	Slave Unit types	Attribute: -			
Size: 4 bytes (l	J32)	Access: RO	•	PDO map	: Not possible			

- Indicates the device information.
- Sub-index 1(Vendor ID) gives the manufacturer identifier.
- Sub-index 2 (Product Code) gives the value assigned to each Slave Unit type.
- Sub-index 3 (Revision Number) gives the Unit revision number.

Bits 0 to 15: Minor revision number of the device

Bits 16 to 31: Major revision number of the device

10F3 hex Diagnosis Hist	Diagnosis History						
Sub-index 0: Number of entries							
Range: –	Unit:	_	Default: 0D hex	Attribute: –			
Size: 1 byte (U8)	-	Access: RO	•	PDO map: Not possible			
Sub-index 1: Maximum Messages							
Range: –	Unit:	_	Default: 00 hex	Attribute: –			
Size: 1 byte (U8)	-	Access: RO	•	PDO map: Not possible			
Sub-index 2: Newest Message							
Range: –	Unit:	_	Default: -	Attribute: –			
Size: 1 byte (U8)		Access: RO		PDO map: Not possible			
Sub-index 5: Flags		•		•			
Range: 0000 hex- 0001 hex	Unit:	_	Default: 0000 hex	Attribute: –			
Size: 2 bytes (U16)		Access: RW		PDO map: Not possible			
Sub-index 6 to 13: Diagnosis Messa	ige 1-8	•		•			
Range: –	Unit:	_	Default: -	Attribute: –			
Size: 23 bytes (VS)		Access: RO		PDO map: Not possible			

- This object indicates up to 8 diagnosis histories. It also sets whether to notify emergency messages or not
- Sub-index 1 (Maximum Messages) gives the number of error messages.
- Sub-index 2 (Newest Messages) gives the Sub-index number the latest message in the diagnosis history.
- Sub-index 5 (Flags) is the control flag of diagnosis history. It specifies whether or not to notify error
 messages via emergency messages. Setting 0001 hex means to notify. It is set to 0001 hex
 (Emergency notify) when power is turned ON. At startup, the setting is 0000 hex (no emergency
 notification).
- Sub-indexes 6 to 13 (Diagnosis messages 1 to 8) indicate the diagnosis history.

 From Sub-index 6 (Diagnosis message 1) to Sub-index 13 (Diagnosis message 8) are stored 8 errors. The 9th error and onward are stored from the Sub-index 6 (Diagnosis message 1) again.

A-1-5 PDO Mapping Object

Indexes 1600 hex to 17FF hex are used for Receive PDO mapping, and indexes 1A00 hex to 1BFF hex are used for Transmit PDO mapping. Sub-indexes after Sub-index 1 provide information about the application object being mapped.

	31	16	15	8	7	0
	Indexes		Sub Indexes		Bit length	
-	MSB					LSB

Bits 0 to 7 : Bit length of the mapped object.

(For example, for 32 bits, 20 hex is given.)

Bits 8 to 15 : Sub-index of the mapped object.

Bits 16 to 31 : Index of the mapped object.

	O Mapping			
Sub-index0: Number of objects				
Range: -	Unit: -	Default: 10 hex	Attribute: -	
Size: 1byte(U8)	Access: R	0	PDO Map: Not possible	
Sub-index1 to 16: 1st to 16th Input Obje	ect to be mapped			_
Range: -	Unit: -	Default: 30201101 hex 30201201 hex 30201301 hex	Attribute: -	
		30201F01 hex 30202001 hex		
Size: 4byte(U32)	Access: R	0	PDO Map: Possible	
1B06 hex 263rd transmit PD	O Mapping			
Sub-index0: Number of objects				
Range: -	Unit: -	Default: 10 hex	Attribute: -	
Size: 1byte(U8)	Access: R	0	PDO Map: Not possible	
Sub-index1 to 16: 1st to 16th Input Obje	ect to be mapped		· · ·	
Range: -	Unit: -	Default: 30202101 hex 30202201 hex 30202301 hex 30202F01 hex 30203001 hex	Attribute: -	
Size: 4 bytes (U32)	Access: R		PDO map: Possible	
CI2C. 4 Byte5 (CC2)	7100000.11		1 BO Map. 1 coolbie	
1B07 hex 264th transmit PD	O Manning			
Sub-index0: Number of objects	о марріпу			
Range: -	Unit: -	Default: 10 hex	Attribute: -	
	Access: R		PDO Map: Not possible	
Size: 1byte(U8)		<u> </u>	PDO Map. Not possible	
Sub-index1 to 16: 1st to 16th Input Obje		T. C. W. 000004044	Laure	
Range: -	Unit: -	Default: 30203101 hex 30203201 hex 30203301 hex 30203F01 hex 30204001 hex	Attribute: -	
		3020 400 T TICK		
Size: 1 hytes (1132)	Access: Ri	<u> </u>	PDO man: Possible	
Size: 4 bytes (U32)	Access: R	0	PDO map: Possible	_
1B08 hex 265th transmit PD	l	0	PDO map: Possible	
1B08 hex 265th transmit PD Sub-index0: Number of objects	O Mapping			
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: -	O Mapping Unit: -	Default: 01 hex	Attribute: -	
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8)	O Mapping Unit: - Access: Re	Default: 01 hex		
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map	O Mapping Unit: - Access: Reped	Default: 01 hex	Attribute: - PDO Map: Not possible	
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: -	O Mapping Unit: - Access: Reped Unit: -	Default: 01 hex Default: 300A0108 hex	Attribute: - PDO Map: Not possible Attribute: -	
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map	O Mapping Unit: - Access: Reped	Default: 01 hex Default: 300A0108 hex	Attribute: - PDO Map: Not possible	
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: - Size: 4byte(U32)	O Mapping Unit: - Access: Reped Unit: - Access: Reped	Default: 01 hex Default: 300A0108 hex	Attribute: - PDO Map: Not possible Attribute: -	
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: - Size: 4byte(U32) 1B09 hex 266th transmit PD	O Mapping Unit: - Access: Reped Unit: - Access: Reped	Default: 01 hex Default: 300A0108 hex	Attribute: - PDO Map: Not possible Attribute: -	
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: - Size: 4byte(U32) 1B09 hex 266th transmit PD Sub-index0: Number of objects	O Mapping Unit: - Access: Reped Unit: - Access: Report Access: Report O Mapping	Default: 01 hex Default: 300A0108 hex	Attribute: - PDO Map: Not possible Attribute: - PDO Map: Possible	
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: - Size: 4byte(U32) 1B09 hex 266th transmit PD Sub-index0: Number of objects Range: -	O Mapping Unit: - Access: Reped Unit: - Access: Reped Unit: - Access: Reped Unit: -	Default: 01 hex Default: 300A0108 hex Default: 02 hex	Attribute: - PDO Map: Not possible Attribute: - PDO Map: Possible Attribute: -	
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: - Size: 4byte(U32) 1B09 hex 266th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8)	O Mapping Unit: - Access: Reped Unit: - Access: Reped O Mapping Unit: - Access: Reped	Default: 01 hex Default: 300A0108 hex Default: 02 hex	Attribute: - PDO Map: Not possible Attribute: - PDO Map: Possible	
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: - Size: 4byte(U32) 1B09 hex 266th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map	O Mapping Unit: - Access: Reped Unit: - Access: Reped O Mapping Unit: - Access: Reped	Default: 01 hex Default: 300A0108 hex Default: 02 hex	Attribute: - PDO Map: Not possible Attribute: - PDO Map: Possible Attribute: - PDO Map: Not possible	
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: - Size: 4byte(U32) 1B09 hex 266th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: -	O Mapping Unit: - Access: Reped Unit: - Access: Reped O Mapping Unit: - Access: Reped	Default: 01 hex Default: 300A0108 hex Default: 02 hex	Attribute: - PDO Map: Not possible Attribute: - PDO Map: Possible Attribute: - PDO Map: Not possible Attribute: -	
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: - Size: 4byte(U32) 1B09 hex 266th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map	O Mapping Unit: - Access: Reped Unit: - Access: Reped O Mapping Unit: - Access: Reped	Default: 01 hex Default: 300A0108 hex Default: 02 hex Default: 30000101 hex	Attribute: - PDO Map: Not possible Attribute: - PDO Map: Possible Attribute: - PDO Map: Not possible	
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: - Size: 4byte(U32) 1B09 hex 266th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: -	O Mapping Unit: - Access: Reped	Default: 01 hex Default: 300A0108 hex Default: 02 hex Default: 30000101 hex	Attribute: - PDO Map: Not possible Attribute: - PDO Map: Possible Attribute: - PDO Map: Not possible Attribute: -	
1B08 hex 265th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: - Size: 4byte(U32) 1B09 hex 266th transmit PD Sub-index0: Number of objects Range: - Size: 1byte(U8) Sub-index1: 1st Input Object to be map Range: - Size: 4byte(U32)	O Mapping Unit: - Access: Reped	Default: 01 hex Default: 300A0108 hex Default: 02 hex Default: 30000101 hex	Attribute: - PDO Map: Not possible Attribute: - PDO Map: Possible Attribute: - PDO Map: Not possible Attribute: -	

1B4C hex 1B4D hex 1B4E hex to 1BA5 hex	333rd to 422nd Transmit PDO Mappings					
Subindex 0: Numbe	r of Objects					
Range: -	Unit:		Default: 01 hex		Attribute:	
Size: 1 byte (U8)	•	Access: RO	•	PDO map: N	Not possible	
Subindex 1: 1st Inpu	ıt Object to Be Mapped	*		•		
Range: -	Unit:		Default: 40040120 hex 40050120 hex 40040220 hex 4E840220 hex		Attribute:	
Size: 4 bytes (U32)		Access: RO		PDO map: F	Possible	
,		1				
1BA6 hex 1BA7 hex 1BA8 hex to 1BC3 hex Subindex 0: Numbe						
Range: -	Unit:		Default: 01 hex	_	Attribute:	
Size: 1 byte (U8)		Access: RO		PDO map: N	Not possible	
Subindex 1: 1st Inpu	ıt Object to Be Mapped		1		,	
Range: -	Unit:		Default: 40090120 hex 40890120 hex 41090120 hex 4E890120 hex		Attribute:	
Size: 4 bytes (U32)		Access: RO		PDO map: F	Possible	
, , ,		l				
1BFF hex	512ndth transmit PDO M	apping				
Sub-index0: Numbe	r of objects					
Range: -	Unit:	-	Default: 01 hex		Attribute: -	
Size: 1byte(U8)		Access: RO		PDO Map: N	lot possible	
Sub-index1: 1st Inpu	ut Object to be mapped					
Range: -	Unit:	-	Default: 20020108 hex		Attribute: -	
Size: 4byte(U32)		Access: RO		PDO Map: F	Possible	

A-1-6 Sync Manager Communication Object

The communication memory of EtherCAT is set by the objects from 1C00 hex to 1C13 hex.

1C00 hex	Sync Manager Communication Type							
Sub-index 0: Number of used SM channels								
Range: -	Uni	<u>:</u> –	Default: 04 hex		Attribute: -			
Size: 1 byte (U8)	<u>.</u>	Access: RO		PDO map: N	Not possible			
Sub-index 1: Comr	nunication Type Sync Man	ager 0						
Range: -	Uni	t:	Default: 01 hex		Attribute: -			
Size: 1 byte (U8)		Access: RO		PDO map: Not possible				
Sub-index 2: Comr	nunication Type Sync Man	ager 1						
Range: -	Uni	t:	Default: 02 hex		Attribute: -			
Size: 1 byte (U8)		Access: RO		PDO map: Not possible				
Sub-index 3: Comr	nunication Type Sync Man	ager 2						
Range: -	Uni	i: -	Default: 03 hex		Attribute: -			
Size: 1 byte (U8)		Access: RO		PDO map: Not possible				
Sub-index 4: Comr	nunication Type Sync Man	ager 3						
Range: -	Uni	i: -	Default: 04 hex		Attribute: -			
Size: 1 byte (U8)		Access: RO		PDO map: N	Not possible			

- The sync manager has the following settings.
 - SM0 : Mailbox receive (EtherCAT Master Unit to Slave Unit)
 - SM1 : Mailbox transmit (EtherCAT Slave Unit to Master Unit)
 - SM2 : Process data output (EtherCAT Master Unit to Slave Unit)
 - SM3 : Process data input (EtherCAT Slave Unit to Master Unit)

1C10 hex Sync M	Sync Manager 0 PDO Assignment					
Sub-index 0: Number of assigned PDOs						
Range: 00 hex	Unit: -	_	Default: 00 hex		Attribute: -	
Size: 1 byte (U8) Access: RO			PDO map: N	lot possible		

- It indicates the number of PDO mappings used by this sync manager.
- · Mailbox reception sync manager does not have PDOs.

1C11 hex Sync Mar	Sync Manager 1 PDO Assignment					
Sub-index 0: Number of assigned PDOs						
Range: 00 hex	ex Unit: - Default: 00 hex Attribute		Attribute: -			
Size: 1 byte (U8) Access: RO PDO map: Not possible			lot possible			

- It indicates the number of PDO mappings used by this sync manager.
- Mailbox transmit sync manager does not have PDOs.

1C12 hex Sync Manager 2 PDO Assignment							
Sub-index 0: Number of assigned PDOs							
Range: 00 hex to 08 hex Unit: -			Default: Differ by Slave Unit types* Attribute: –		Attribute: -		
Size: 1 byte (U8)	Access: RW*			PDO map: N	lot possible		
Sub-index 1 to 8: 1st-8th PDO Mapping	Object	Index of assigned P	DO				
Range: 1600 hex to 17FF hex	nge: 1600 hex to 17FF hex Unit: –		Default: Differ by Slave Unit types*		Attribute: -		
Size: 2 bytes (U16) Access: RW*		PDO map: Not poss		lot possible			

- * "RO" is set if there is no RxPDO.
- It indicates the RxPDOs used by this sync manager.

1C13 hex Sync Manager 3 P	Sync Manager 3 PDO Assignment						
Sub-index 0: Number of assigned PDOs							
Range: 00 hex to 08 hex	Unit:		Default: Differ by Slave Un	it types*	Attribute: -		
Size: 1 byte (U8)		Access: RW*		PDO map: Not possible			
Sub-index 1 to 24: 1st-24th PDO Mappi	ng Obje	ct Index of assigned	d PDO				
Range: 1A00 hex to 1BFF hex	Unit:	 Default: Differ by Slave U 		it types*	Attribute: -		
Size: 2 bytes (U16)	Access: RW*		PDO map: N		lot possible		

- * "RO" is set if there is no TxPDO.
- It indicates the TxPDOs used by this sync manager.
- * The default settings for Sync Manager 2 PDO Assignment and Sync Manager 3 PDO Assignment are different for OMRON software and software from other companies. The default settings are given in the following table.

Default Settings for OMRON Software (When Using the Sysmac Studio)

	PDO assignments for Sync Manager 2		PDO assignments for Sync Manager 3						
Model	Number	Assigned PDOs	Number		Α	ssigned PDC)s		
a	of assigned RxPDOs		of assigned TxPDOs	1	2	3	4	5	
E3NW-ECT	00 hex		0E hex	1B00 hex	1B01 hex	1B08 hex	1B0A hex	1B0B hex	
				6	7	8	9	10	
				1B10 hex	1B12 hex	1B14 hex	1B16 hex	1B18 hex	
				11	12	13	14		
				1B1A hex	1B1C hex	1B1E hex	1BFF hex		

Default Settings for OMRON Software (When Using the CX-Programmer)

Model Sync Number of assigne	PDO assignments for Sync Manager 2		PDO assignments for Sync Manager 3							
	Number		Number		Assigned PDOs					
	of assigned RxPDOs	Assigned PDOs	of assigned TxPDOs	1	2	3	4	5		
E3NW-ECT	00 hex		05 hex	1B00 hex	1B01 hex	1B08 hex	1B0A hex	1B0D hex		

If you are using the CX-Programmer, you cannot change the PDO assignments that are given above.

Default Settings for Software from Another Manufacturer

	_	nments for anager 2	PDO assignments for Sync Manager 3						
Model	Number		Number of assigned TxPDOs		As	ssigned PD0	Os		
	of assigned RxPDOs	Assigned PDOs		1	2	3	4	5	
E3NW-ECT	00 hex		0D hex	1B04 hex	1B05 hex	1B09 hex	1B0A hex	1B0B hex	
				6	7	8	9	10	
				1B10 hex	1B12 hex	1B14 hex	1B16 hex	1B18 hex	
				11	12	13	14		
				1B1A hex	1B1C hex	1B1E hex			

Precautions for Correct Use

You can assign a maximum of 350 bytes of PDOs for the E3NW-ECT. Do not assign more than 350 bytes of PDOs.

A-1-7 Manufacturer Specific Objects

This section describes the CiA401 generic I/O module device profile that is implemented in the E3NW-ECT Sensor Communication Unit and the objects that are uniquely implemented in the E3NW-ECT Sensor Communication Unit as an EtherCAT slave.

Manufacturer-specific Area

2100 hex	Error History Clear						
Range: -		Unit: -		Default: 00000000 hex		Attribute: A	
Size: 4byte (U32)			Access: RW		PDO map: N	lot possible	

- This object clears diagnosis history of 10F3 hex (Diagnosis History).
- It clears the history only when specific values are written. The specific value is "elcl".

MSB			LSB
I	С	I	е
6C hex	63 hex	6C hex	65 hex

Writing values other than this is invalid.

2002 hex	Sysmac Error					
Sub-index0: Nu	mber of entries					
Range: - Unit:		Unit: -	•	Default: 02 hex	Default: 02 hex	
Size: 1byte (U8))		Access: RO		PDO map: Not possible	
Sub-index1: Sys	smac Error Status					
Range: -		Unit: -	- Default: 00 hex			Attribute: -
Size: 1byte (U8))		Access: RO	•	PDO map: p	possible
Sub-index2: Sys	smac Error Status Clear					
Range: -		Unit: -		Default: 00 hex		Attribute: A
Size: 1byte (U8)		Access: RW		PDO map: I	PDO map: Not possible	

- The mapping is used for Sysmac error status notification and to clear Sysmac error status.
- Sub-index 1: Sysmac Error Status
 - This object is for notification of errors that are detected in the Slave Unit.
 - When connected to an NJ-series Machine Automation Controller (NJ□01-1□00), map this object to a PDO.
- Sub-index 2: Sysmac Error Status Clear
 - This object is used by the Controller (a Sysmac device) to reset errors that occur in Slave Units.

Reference

In the default Sysmac Studio settings, sub-index 1 (Sysmac Error Status) is automatically mapped to a PDO because 1BFF hex (512th transmit PDO Mapping) is assigned.

A Appendices

2200 hex	Communication Error Setting						
Range: 00 hex-0F hex Unit:			s Default: 01 hex			Attribute: C	
Size: 1byte (U8)			Access: RW		PDO map: N	lot possible	

- Object mounted only in the DC mode.
- The number of sequences for detecting communications errors is set with this object.
- The setting range is from 00 to 0F hex and the number of detections is "the set number of times + 1.
- Rewriting value is possible at operation in the DC mode, but the operation is performed with the value set when shifting from the pre-operational state to safe-operational state. Note that at this point, the rewritten value is read.

Note: With the default setting of 01 hex, an error is detected if communications errors occur twice in a row.

2201 hex	Sync Not Received Timeout Setting						
Range: 0000 hex-0258 hex Unit:			S	Default: 0000 hex		Attribute: C	
Size: 2byte (U16)		Access: RW		PDO map: Not possible			

- Object mounted only in the DC mode.
- This object is used to set the standby time until the first synchronization interrupt signal (SYNC0) is input after shifting to the safe-operational state (state where a DC mode is confirmed).
- If the first interrupt signal (SYNC0) is not input at all within this setting time, a synchronization error occurs.
- The setting range is from 0000 hex to 0258 hex (600s) and operation is performed at 120s when
- Rewriting value is possible at operation in the DC mode, but the operation is performed with the value set when shifting from the pre-operational state to safe-operational state. Note that at this point, the rewritten value is read.

3000 hex	Sensor Communica	Sensor Communication Status							
Sub-index0:									
Range: 08 hex Unit:		-	Default: 08 hex		Attribute: -				
Size: 1byte(U8)	Size: 1byte(U8)		Access: RO		PDO map: N	lot possible			
Sub-index1: Cor	mmunication Busy		•		•				
Range: 00 hex-0)1 hex	Unit:	Default: 00 hex			Attribute: -			
Size: 1 bit (BOO	L)		Access: RO	Access: RO		oossible			
Sub-index2: Cor	mmunication Error		•		•				
Range: 00 hex-0	Range: 00 hex-01 hex Unit: -		-	Default: 00 hex		Attribute: -			
Size: 1 bit (BOOL)		Access: RO		PDO map: possible					

- This object detect communication status with E3NW-ECT and sensor amplifiers.
- · When the Communication Busy bit is ON, communications are in progress between the Sensor Communication Unit and the Sensor Amplifiers. In this case, do not send new SDOs to the Sensor

If the Communications Error bit turns ON, the set value for the number of Sensors does not agree with the number of Sensors that are actually connected. Check the set value and the connected Sensors. If you are using Dummy Sensors, set the number of Sensors to the total of the actual number of Sensors and Dummy Sensors.

3001 hex	Number of Sensors	3				
Sub-index0:	•					
Range: 03 hex		Unit:	-	Default: 03 hex	Default: 03 hex	
Size: 1byte(U8)			Access: RO		PDO map: N	Not possible
Sub-index1: Num	ber of Sensors Setting					
Range: 00 hex-18	E hex	Unit:	-	Default: 00 hex		Attribute: A
Size: 1byte(U8)			Access: RW		PDO map: possible	
Sub-index2: Num	ber of Sensors with Du	mmy				
Range: 00 hex-01	1 hex	Unit:	-	Default: 00 hex		Attribute: -
Size: 1byte(U8)			Access: RO		PDO map: p	possible
Sub-index3: Num	ber of Connected Sens	sors				
Range: 00 hex-01	1 hex	Unit:	-	Default: 00 hex		Attribute: -
Size: 1byte(U8)			Access: RO	O PDO map: Not possible		

- Sub-index1: Number of Sensors Setting
 - This object use to set sensor number include dummy sensors. Set the number of Sensors to register to the number of Sensors that are actually connected plus the number of Dummy Sensors.
- · Sub-index2: Number of Sensors with Dummy
 - This object detect number of sensors recognized by E3NW-ECT (with dummy sensors).
- Sub-index3: Number of Connected Sensors
 - This object detect number of sensors recognized by E3NW-ECT (without dummy sensors).

- Sub-index1: Input Filter Setting:
 - · This object set Input Filter for free run mode.
 - 0: disable
 - 1: enable

To enable the new settings, restart the Unit.

- Sub-index2: Input Filter Information:
 - This object detect Input Filter Setting for free run mode.
 - 0: disable
 - 1: enable

3004 hex Dummy Setting					
Sub-index0:					
Range: 03 hex	Unit:	-	Default: 03 hex		Attribute: -
Size: 1byte(U8)		Access: RO		PDO map: N	Not possible
Sub-index1: Dummy Sensors Setting		•		•	
Range: 00000000 hex-3FFFFFF hex	Unit:	-	Default: 00000000 hex		Attribute: R
Size: 4byte(U32)	ize: 4byte(U32) Access		Access: RW		Not possible
Sub-index2: Dummy Sensors Information	n	•		•	
Range: 00000000 hex-3FFFFFF hex	Unit:	-	Default: 00000000 hex		Attribute: -
Size: 4byte(U32)		Access: RO		PDO map: N	Not possible
Sub-index3: Dummy Sensors Response	Setting	g		•	
Range: 00 hex-01 hex	Unit:	-	Default: 00 hex		Attribute: A
Size: 1byte(U8)		Access: RW		PDO map: Not possible	

- Sub-index1: Dummy Sensors Setting
 - Turn ON the bit that corresponds to the unit number to set as a Dummy Sensor.

Turn ON bit 0 of the 32 bits to set unit number 1 as a Dummy Sensor, and the turn ON bit 1 to set unit number 2 as a Dummy Sensor.

To enable the new settings, restart the Unit.

- · Sub-index2: Dummy Sensors Information
 - · This object detect dummy sensor setting.
- · Sub-index3: Dummy Sensors Response Setting
 - This object set the response setting when sending command to dummy sensor.
 - 0: Dummy sensor reply normal response.

(The read data is always "0")

1: Dummy sensor reply error response.

3005 hex Input Delay Time S	Input Delay Time Status						
Subindex 0:							
Range: 01 hex	Unit:		Default: 01 hex		Attribute:		
Size: 1 byte (U8)		Access: RO		PDO map: N	lot possible		
Subindex 1: Input Delay Time Status							
Range: 00 to 05 hex	Unit:		Default: 00 hex		Attribute:		
Size: 1 byte (U8)	Access: RO			PDO map: F	Possible		

- Subindex 1: Input Delay Time Status
 - This object reads the input delay time status in Free-Run Mode.
 - 0: Undefined (Pre-Operational state)
 - 1: Standard (125 μs)
 - 2: High speed (100 μs)
 - 3: Low speed 1 (150 μ s)
 - 4: Low speed 2 (175 μs)
 - 5: TxPDO Normal Mode Type (200 μs)

The response time is the refresh cycle that is given in "7-2-3 Mode Setting Functions for PDO Communications" on page 7-6.

300A hex	Sensor Communica	Sensor Communication Status 8bit								
Sub-index0:										
Range: 01 hex Unit: - Default: 01 hex Attribute: -										
Size: 1byte(U8)		OTIL.	Access: RO		PDO map: Not possible					
Sub-index1: Ser	nsor Communication Sta	tus	!			·				
Range: 00 hex-0)2 hex	Unit:	-	Default: 00 hex		Attribute: -				
Size: 1byte(U8)		Access: RO		PDO map		possible				

- This object detect communication status with E3NW-ECT and sensor amplifiers.
- When bit 0 is ON, communications are in progress between the Sensor Communication Unit and the Sensor Amplifiers. In this case, do not send new SDOs to the Sensor Amplifiers.
- If bit 1 turns ON, the set value for the number of Sensors does not agree with the number of Sensors that are actually connected. Check the set value and the connected Sensors. If you are using Dummy Sensors, set the number of Sensors to the total of the actual number of Sensors and Dummy Sensors.

300B hex Sensor Status					
Subindex 0:					
Range: 01 hex	Unit:		Default: 01 hex		Attribute:
Size: 1 byte (U8)		Access: RO		PDO map: N	Not possible
Subindex 1: Sensor Warning Status		•			
Range: 0000 0000 to 3FFFFFF hex Unit			Default: 0000 0000 hex		Attribute:
Size: 4 bytes (U32) Access:		Access: RO		PDO map: F	Possible

- Subindex 1: Sensor Warning Status
 - This object reads the current Sensor warning status for the Sensors.
 - The bit will be 1 when a warning exists for the corresponding Unit. The Unit is normal when the corresponding bit is 0.
 - A Sensor Warning Status will exist whenever any bit of bits 08 to 15 for the Units in the Sensor Status is ON.

300C hex TxPDO Mapping	TxPDO Mapping Mode								
Subindex 0:									
Range: 02 hex	Unit:		Default: 02 hex		Attribute:				
Size: 1 byte (U8)		Access: RO		PDO map: N	lot possible				
Subindex 1: TxPDO Mapping Mode Setting									
Range: 00 to 01 hex	Unit:		Default: 00 hex		Attribute: A				
Size: 1 byte (U8)		Access: RW		PDO map: N	lot possible				
Subindex 2: TxPDO Mapping Mode In	ormatio	า							
Range: 00 to 01 hex	Unit:		Default: 00 hex		Attribute:				
Size: 1 byte (U8)		Access: RO PDO map: Not possible		Not possible					

Subindex 1

You can change the TxPDO mapping mode setting.

To enable the new settings, restart the Unit.

- 0: Normal Mode (Processing of PDO communications is divided over more than one cycle. The maximum assignable size is 350 bytes.)
- 1: Detection Level Speed Priority Mode (The detection level is refreshed every cycle between the Sensor Amplifiers and Sensor Communication Unit. The maximum assignable size is 108 bytes.)
- Subindex 2

This subindex gives the current setting.

- 0: Normal Mode (Processing of PDO communications is divided over more than one cycle. The maximum assignable size is 350 bytes.)
- 1: Detection Level Speed Priority Mode (The detection level is refreshed every cycle between the Sensor Amplifiers and Sensor Communication Unit. The maximum assignable size is 108 bytes.)

3010 hex	Sensor Reset							
Subindex 0:								
Range: 01 hex	ange: 01 hex			Default: 01 hex		Attribute:		
Size: 1 byte (U8)	Size: 1 byte (U8)		Access: RO		PDO map: Not possible			
Subindex 1: Sens	or Reset							
Range: 0000 to 0001 hex Unit:		Unit:	Default: - hex			Attribute: A		
Size: 1 byte (U8)	ze: 1 byte (U8) Access: RW		Access: RW	•	PDO map: N	Not possible		

- This object executes a sensor set command for the unit number specified by the index.
- Execute 0001 hex when writing. This is always 0000 hex when reading.

3020 hex	Read input bits								
Sub-index0:									
Range: 40 hex Uni		Unit: -		Default: 40 hex		Attribute: -			
Size: 1byte(U8)	Size: 1byte(U8)		Access: RO		PDO map: Not possible				
Sub-index1 to 60: R	ead input bits 0 to 59)			•				
Range: 00 hex-01 hex Unit:		Unit: -	Default: 00 hex			Attribute: -			
Size: 1 bit (BOOL)		Access: RO		PDO map: Possible					

- This object is Sensor Input 1 to 60.
- The order of the assignments is given below.

Input Bit 0: No.1 sensor input 1

Input Bit 1: No.1 sensor input 2

Input Bit 2: No.2 sensor input 1

Input Bit 3: No.2 sensor input 2

- - -

Input Bit 56: No.29 sensor input 1

Input Bit 57: No.29 sensor input 2

Input Bit 58: No.30 sensor input 1

Input Bit 59: No.30 sensor input 2

Input Bit 60: Cannot be used.

Input Bit 61: Cannot be used.

Input Bit 62: Cannot be used.

Input Bit 63: Cannot be used.

• On the E3NX-FA10/40, E2NC-EA10/40, E9NC-AA10/40, E9NC-VA10/40, and E9NC-VD20/50, the bit is fixed at "0" for both sensor outputs 1 and 2.

• The address connection with sensor amplifier

These object to communication sensor amplifiers.

Each object exist 1 to 30 objects by number of sensors.

The object is offset 80Hex.

Show below number of sensors and index address relation.

Unit number	Index
1	4000 to 407F
2	4080 to 40FF
3	4100 to 417F
4	4180 to 41FF
5	4200 to 427F
6	4280 to 42FF
7	4300 to 437F
8	4380 to 43FF
9	4400 to 447F
10	4480 to 44FF
11	4500 to 457F
12	4580 to 45FF
13	4600 to 467F
14	4680 to 46FF
15	4700 to 477F
16	4880 to 48FF
17	4800 to 487F
18	4980 to 49FF
19	4900 to 497F
20	4A80 to 4AFF
21	4A00 to 4A7F
22	4A80 to 4AFF
23	4B00 to 4B7F
24	4B80 to 4BFF
25	4C00 to 4C7F
26	4C80 to 4CFF
27	4D00 to 4D7F
28	4D80 to 4DFF
29	4E00 to 4E7F
30	4E80 to 4EFF

Writing must be performed one object at a time. There is an object for selection of multiple Sensor Amplifier Unit numbers between 1 and 30.

The indexes for the objects are from 4F00 to 4F7F hex.

The following abbreviations are used for the applicable Sensor Amplifier Units.

- FA□0: E3NX-FA□0
- LA0: E3NC-LA0
- SA0: E3NC-SA0
- TA0: E9NC-TA0
- CA0: E3NX-CA0
- MA0: E3NX-MA0
- FAH0: E3NX-FAH0
- EA□0: E2NC-EA□0
- AA□0: E9NC-AA□0
- VA□0: E9NC-VA□0
- VD□0: E9NC-VD□0

Index (for unit numbers 1 to 30)	Index (for multiple objects)	Subindex	Name	Size	Access	Applicable Sensor Amp			plifier	Units	
4011 + (N-1) × 80 hex	4F11 hex	1 or 2	DPC Setting	U16	RW	FA□0 MA0	LAO FAH0		-	-	-
			Display Digits	U16	RW	-	-	-	TA0 AA□0	- VA□0	-
4012 + (N-1) × 80 hex	4F12 hex	1	Display Mode	U32	RW	FA□0 MA0	LAO FAH0	SA0 EA□0	- AA□0	CA0 VA□0	- VD□0
4013 + (N-1) × 80 hex	4F13 hex	1	Inverted Display	U16	RW	FA _□ 0 MA0	LA0 FAH0	SA0 EA=0	-	CA0	-
4014 + (N-1) × 80 hex	4F14 hex	1	Channel Display	U16	RW	FA=0 MA0	LA0 FAH0	SA0 EA=0	- AA□0	CA0 VA□0	- VD□0
4015 + (N-1) × 80 hex	4F15 hex	1	Eco Function Setting	U16	RW	FA=0 MA0	LA0 FAH0	SA0 EA=0	TA0	CA0 VA=0	- VD□0
4016 + (N-1) × 80 hex	4F16 hex	1	Key Lock Setting	U16	RW	FA=0 MA0	LA0 FAH0	SA0 EA=0	TA0	CA0 VA=0	- VD□0
4017 + (N-1) × 80 hex	4F17 hex	1	Display Blinking	U16	RW	FA=0 MA0	LA0 FAH0	SA0 EA=0	TA0	CA0 VA=0	- VD□0
4020 + (N-1) × 80 hex	4F20 hex	1 or 2	Hysteresis Width Setting	U16	RW	FA _□ 0 MA0	LA0 FAH0	SA0 EA=0	TA0	VA⊔0 - VA□0	- VD□0
4021 + (N-1) × 80 hex	4F21 hex	1 or 2	Hysteresis Width 1	U32	RW	FA=0	LA0	SA0	-	-	-
4022 + (N-1) × 80 hex	4F22 hex	1 or 2	Hysteresis Width 2	U32	RW	FA=0 MA0	LAO FAH0	EA□0 SA0	AA□0 TA0	VA□0 -	VD□0 - VD□0
4023 + (N-1) × 80 hex	4F23 hex	1	Keep Setting	U16	RW	-	-	SA0	-	-	-
			Mutual Interference Prevention			-	-	-	-	-	-
			No. of Units Setting*3 External input setting change *3			-	-	EA□0 -	-	-	-
			Sensor OFF setting *3			- FA□0	-	-	-	-	VD□0 -
4024 + (N-1) × 80 hex	4F24 hex	1	Hold Mode Setting	U16	RW	MA0	-	- SA0	-	-	-
			Zero reset automatic following *3			-	-	-	-	-	-
4025 + (N-1) × 80 hex	4F25 hex	1	Alarm Output Level Setting	U16	RW	- FA□0	- LA0	-	-	-	VD□0 -
4030 + (N-1) × 80 hex	4F30 hex	1 or 2	Maximum Sensitivity Tuning	U16	RW	- FA□0	FAH0 LA0	EA□0	-	-	-
4031 + (N-1) × 80 hex	4F31 hex	1 or 2	Zero Reset	U16	RW	MA0 FA□0	FAH0 LA0	- SA0	-	- CA0	-
4032 + (N-1) × 80 hex	4F32 hex	1 or 2	Projection Lighting OFF	U16	RW	MA0 FA□0	FAH0 LA0	EA□0 SA0	AA□0 -	VA□0 CA0	VD□0 -
4033 + (N-1) × 80 hex	4F33 hex	1 or 2	2-point Tuning (1st point)	U16	RW	MA0 FA□0	FAH0 LAO	- SA0	- TA0	- CA0	-
$4034 + (N-1) \times 80 \text{ hex}$	4F34 hex	1 or 2	2-point Tuning (2nd point)	U16	RW	MA0	FAH0	EA=0	AA=0	VA _□ 0	-
4035 + (N-1) × 80 hex	4F35 hex	1 or 2	Position Tuning	U16	RW	MA0 FA=0	FAH0	EA ₀	AA□0	VA□0	-
, ,			· ·			MA0	FAH0	EA=0	- -	-	-
4036 + (N-1) × 80 hex	4F36 hex	1 or 2	Full-auto Tuning Setup	U16	RW	FA=0 MA0	LA0 FAH0	SA0 EA=0	TA0 AA□0	CA0 VA□0	- VD□0
4037 + (N-1) × 80 hex	4F37 hex	1 or 2	Full-auto Tuning Execution	U16	RW	FA=0 MA0	LA0 FAH0	SA0 EA=0	- AA□0	CA0 VA□0	- VD□0
4038 + (N-1) × 80 hex	4F38 hex	1 or 2	Percentage Tuning Setting	U16	RW	FA□0 MA0	LAO FAH0	- EA□0	- AA□0	- VA□0	-
			Origin Point Use Setting*1	U16	RW	-	- -	- -	TA0 -	-	-
			Distinction Mode*2	U16	RW	-	-	-	-	CA0	-

Index (for unit numbers 1 to 30)			Name	Size	Access	Appl	icable	Sense	or Am	plifier	Units
4039 + (N-1) × 80 hex	4F39 hex	1 or 2	Percentage Tuning Level	INT32*1	RW	FA□0 MA0	LA0 FAH0	- EA□0	- AA□0	- VA□0	-
			Preset Value*1	INT32*1	RW	-	-	-	TA0	-	-
			Tuning Level* ²	INT32	RW	-	-	-	-	CA0	-
403A + (N-1) × 80 hex	4F3A hex	1 or 2	Percentage Tuning	U16	RW	FA□0 MA0	LAO FAH0	- EA□0	- AA□0	- VA□0	-
			1-point tuning*2	U16	RW	-	-	-	-	CA0	-
403B + (N-1) × 80 hex	4F3B hex	1 or 2	Power Tuning Setting	INT32	RW	FA□0 MA0	LA0 FAH0	-	-	-	-
			Tolerance Setting High*1			-	-	-	TA0	-	-
			Scaling Lower Limit Setting*3			-	-	-	- AA□0	- VA□0	-
403C + (N-1) × 80 hex	4F3C hex	1 or 2	Power Tuning Level	INT32	RW	FA□0 MA0	LA0 FAH0	-	-	-	-
			Tolerance Setting Low*1			-	-	-	TA0	-	-
			Scaling Upper limit setting*3			-	-	-	- AA□0	- VA□0	-
403D + (N-1) × 80 hex	4F3D hex	1 or 2	Power Tuning	U16	RW	FA□0 MA0	LA0 FAH0	-	-	-	-
			Fine positioning*3			-	-	- EA□0	-	-	-
403E + (N-1) × 80 hex	4F3E hex	1 or 2	1-point Tuning	U16	RW	-	-	SA0	-	-	-
			Tolerance Tuning*1	U16	RW	-	-	-	TA0	-	-
4041 + (N-1) × 80 hex	4F41 hex	1 or 2	Flashing	U16	RW	FA□0 MA0	LA0 FAH0	SA0	-	CA0	-
4042 + (N-1) × 80 hex	4F42 hex	1	Sensor Initialization	U16	RW	FA□0 MA0	LA0 FAH0	SA0 EA=0	TA0 AA□0	CA0 VA□0	- VD□0
4050 + (N-1) × 80 hex	4F50 hex	1	Self Trigger Level	INT16	RW	-	-	SA0	-	-	-
			Scaling function setting*3			-	-	-	- AA□0	- VA□0	-
			Writing to EEPROM setting*3			FA□0 MA0	-	- EA□0	TA0	-	-
4051 + (N-1) × 80 hex	4F51 hex	1 or 2	Tuning with workpiece absent	U16	RW	-	-	SA0	-	-	-
4052 + (N-1) × 80 hex	4F52 hex	1	Background Removal	U16	RW	-	-	SA0	-	-	-
405F+(N-1)×80 hex	No	1 or 2	Read the detection level*2	INT16	RO	-	-	-	-	CA0	-
4060+(N-1)×80 hex	No	1	Color Detection Level (RED)*2	INT16	RO	-	-	-	-	CA0	-
4061+(N-1)×80 hex	No	1	Color Detection Level (GREEN) *2	INT16	RO	-	-	-	-	CA0	-
4062+(N-1)×80 hex	No	1	Color Detection Level	INT16	RO	-	-	-	-	CA0	-
4063+(N-1)×80 hex	4F63 hex	1	(BLUE)*2 Change Response Data	U16	RW	-	-	-	-	CA0	-
4064+(N-1)×80 hex	4F64 hex	1	pattern *2 Tuning setting(1)*2	U16	RW	-	-	-	AA□0 -	VA□0 CA0	-
4065+(N-1)×80 hex	4F65 hex	1	Tuning setting(2)*2	U16	RW	-	-	-	-	- CA0	-
4066+(N-1)×80 hex	4F66 hex	1	Tuning setting(3)*2	U32	RW	-	-	-	-	- CA0	-
			External input detection time (VD0)*3			- - -	- - -	- - -	- - -	-	- - VD□0

Index (for unit numbers 1 to 30)	Index (for multiple objects)	Subindex	Name	me Size Acc		Applicable Sensor Amplific			olifier	Units	
4067+(N-1)×80 hex	4F67 hex	1	Tuning setting(4)*2	U32	RW	-	-	-	-	CA0	-
4068+(N-1)×80 hex	4F68 hex	1	Tuning setting(5)*2	U32	RW	-	-	-	-	CA0 -	-
4069+(N-1)×80 hex	4F69 hex	1	Light projection power (CA0)	U16	RW	-	-	-	-	CA0 -	-
4071 + (N-1) × 80 hex	4F71 hex	1	Direction* ¹	U16	RW	-	-	-	TA0	-	-
4072 + (N-1) × 80 hex	4F72 hex	1	Output Mode Selection*1	U16	RW	-	-	-	TA0 -	-	-
			Gain switching* ³			-	-	-	-	-	- VD□0
4075 + (N-1) × 80 hex	4F75 hex	1	Preset*1	U16	RW	-	-	-	TA0 -	-	

The TA0 does not use subindex 2.

- *1 Items with asterisks are supported from E3NW-ECT version 1.03.
- *2 Items with asterisks are supported from E3NW-ECT version 1.06.
- *3 Items with asterisks are supported from E3NW-ECT version 1.08. You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)

Precautions for Correct Use

- The Sensor Amplifier Unit bank cannot be changed when using the E3NW-ECT. Leave the Sensor Amplifier Unit in bank 1 (default).
- After executing a setting initialization command after executing one of the tuning commands, an SDO command cannot be received until writing to the EEPROM is completed.
- On the FA_□0 and MA0, an object cannot be accessed during setting initialization and tuning. If an object is accessed, an error response (abort code = 0x08000021) will be returned to the EtherCAT master.

Guidelines for setting initialization and tuning processing times are as follows:

- · Setting initialization: 2 sec
- Tuning: 2 sec (varies depending on the light reception state and tuning type.)
- Because time is required to process setting changes, reading a value immediately after changing a setting may result in the value prior to the change being read. After changing settings, wait briefly before performing reading.
- Time is required to save settings. If you execute consecutive setting changes by SDO communication, add wait time between SDO communications.

This object reads the model number of the Sensor with the unit number that is specified by the index.

Data	Model
0160 hex	E3NX-FA□0/FAH0
01D0 hex	E3NX-FA10/40*3*4
0260 hex	E3NC-LA0
0360 hex	E3NC-SA0
0460 hex	E9NC-TA0*1
0760 hex	E3NX-CA0*2
0560 hex	E3NX-MA0*3
0A60 hex	E2NC-EA0*3
0AD0 hex	E2NC-EA10/40*3*4
0860 hex	E9NC-AA0*3
08D0 hex	E9NC-AA10/40*3*4
0960 hex	E9NC-VA0*3
09D0 hex	E9NC-VA10/40*3*4
0B61 hex	E9NC-VD0*3
0BD5 hex	E9NC-VD20/50*3*4

- *1 Items with asterisks are supported from E3NW-ECT version 1.03.
- *2 Items with asterisks are supported from E3NW-ECT version 1.06.
- *3 Items with asterisks are supported from E3NW-ECT version 1.08.

 You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)
- *4 On the E3NX-FA10/40, E2NC-EA10/40, E9NC-AA10/40, E9NC-VA10/40, and E9NC-VD20/50, the output 2 setting of Index 4000+(N-1)×80 Hex to 0x4075+(N-1)×80 Hex cannot be used.

4001 + (N-1) × 80 No_01 30 Det	ection Le	evel						
Subindex 0: Number of Entries								
Range: 02 hex	Unit:		Default: 02 hex		Attribute:			
Size: 1 byte (U8)	•	Access: RO		PDO map:	Not possible			
Subindex 1: No_01 30 Detection Level IN1								
Range: -1,999 to 9,999 (F831 to 270F hex)	Unit:		Default: hex		Attribute:			
Size: 2 bytes (INT16)	•	Access: RO	-	PDO map:	Possible			
Subindex 1: No_01 30 Detection Le	vel IN2							
Range: -1,999 to 9,999 (F831 to 270F hex)	Unit:		Default: hex		Attribute:			
Size: 2 bytes (INT16)	ze: 2 bytes (INT16) Access: RO		PDO map		Possible			

- This object reads the detection level (amount of incident light) for the Sensor Amplifier with the unit number that is specified by the index.
- The CA0 cannot use this object. Use 405F+(N-1)×80 Hex.

4002 + (N-1) × 80 No_01 30 Peak I	Detection	on Level							
hex									
Subindex 0: Number of Entries									
Range: 02 hex	Unit: -		Default: 02 hex		Attribute:				
Size: 1 byte (U8)		Access: RO		PDO map: N	lot possible				
Subindex 1: No_01 30 Peak Detection Level IN1									
Range: -2,147,483,648 to			Default: hex		Attribute:				
2,147,483,647									
(80000000 to 7FFFFFF hex)									
Size: 4 bytes (INT32)		Access: RO		PDO map: Not possible					
Subindex 2: No_01 30 Peak Detection	Level	IN2							
Range: -2,147,483,648 to	Unit: -		Default: hex		Attribute:				
2,147,483,647									
(80000000 to 7FFFFFF hex)									
Size: 4 bytes (INT32)		Access: RO		PDO map: Not possible					

- This object reads the peak detection level (amount of incident light) when the operating mode setting of the Sensor Amplifier is Light ON/Normally Open with the unit number that is specified by the index. When the operating mode setting is Dark ON/Normally Close, the bottom detection level is read.
- To read the peak detection level, you must set Display Mode to the smallest peak value of incident light and the largest bottom value of interrupted light [P-b] or detection level at peak [PEAK].
- The setting range of the FA□0, LA0, or SA0 is −1,999 to 9,999 (FFFFF831 to 0000270F hex).
- The setting range of the AA□0 or VA□0 is −19,999,999 to 99,999,999 (FECED301Hex-05F5E0FFHex).

4003 + (N-1) × 80 No.	o_01 30 Bottom Dete	ection Level				
Subindex 0: Number of I	Entries					
Range: 02 hex	Unit:		Default: 02 hex		Attribute:	
Size: 1 byte (U8)	<u>.</u>	Access: RO PDO map		PDO map: N	lot possible	
Subindex 1: No_01 30	0 Bottom Detection Le	vel IN1		-		
Range: -2,147,483,648 2,147,483,647 (80000000 to 7F			Default: hex		Attribute:	
Size: 4 bytes (INT32)		Access: RO		PDO map: Not possible		
Subindex 2: No_01 30	0 Bottom Detection Le	vel IN2				
Range: -2,147,483,648 2,147,483,647 (80000000 to 7F			Default: hex		Attribute:	
Size: 4 bytes (INT32)		Access: RO	•	PDO map: N	lot possible	

- This object reads the bottom detection level (amount of incident light) when the operating mode setting of the Sensor Amplifier is Dark ON/Normally Close with the unit number that is specified by the index. When the operating mode setting is Light ON/Normally Open, the peak detection level is read.
- To read the peak detection level, you must set Display Mode to the smallest peak value of incident light and the largest bottom value of interrupted light [P-b].
- The setting range of the FA□0, LA0, or SA0 is -1,999 to 9,999 (FFFFF831 to 0000270F hex).
- The setting range of the AA□0 or VA□0 is −19,999,999 to 99,999,999 (FECED301Hex-05F5E0FFHex).

1004 + (N-1) × 80 No_01 30 Threshold 1 Settings							
Subindex 0: Number of Entries							
Range: 02 hex	Unit:		Default: 02 hex		Attribute:		
Size: 1 byte (U8)		Access: RO	PDO map: N		lot possible		
Subindex 1: No_01 30 Threshold 1 S	ettings	N1					
Range: -2,147,483,648 to 2,147,483,647 (80000000 to 7FFFFFF hex)	Unit:		Default: hex		Attribute: A		
Size: 4 bytes (INT32)		Access: RW		PDO map: Possible			
Subindex 2: No_01 30 Threshold 1 S	ettings	IN2					
Range: -2,147,483,648 to 2,147,483,647 (80000000 to 7FFFFFF hex)	Unit:		Default: hex		Attribute: A		
Size: 4 bytes (INT32)		Access: RW		PDO map: F	Possible		

- This object sets the threshold 1 setting for the Sensor Amplifier with the unit number that is specified by the index.
- Threshold 1 is used in Normal Detection Mode or as the low threshold in Area Detection Mode.
- The setting range of the FA□0, LA0, SA0, CA0, MA0, FAH0 or EA□0 is −1,999 to 9,999 (FFFFF831 to 0000270F hex).
- The setting range for the TA0, AA□0 or VA□0 is −19,999,999 to 99,999,999 (FECED301 to 05F5E0FF hex).
- The setting range of VD□0 is –9999 to 9999 (FFFFD8F1Hex-0000270FHex).
- * It will take some time for the changed threshold to take effect.

 Please wait at least 300 ms after changing the threshold in the case of confirming the threshold value.

4005 + (N-1) × 80 No_01 30 Thresh	hold 2 Settings		
Subindex 0: Number of Entries			
Range: 02 hex	Unit:	Default: 02 hex	Attribute:
Size: 1 byte (U8)	Access: RO		PDO map: Not possible
Subindex 1: No_01 30 Threshold 2 Se	ettings IN1		<u> </u>
Range: -2,147,483,648 to 2,147,483,647 (80000000 to 7FFFFFFF hex)	Unit:	Default: hex	Attribute: A
Size: 4 bytes (INT32)	Access: RW		PDO map: Possible
Subindex 2: No_01 30 Threshold 2 Se	ettings IN2		
Range: -2,147,483,648 to 2,147,483,647 (80000000 to 7FFFFFF hex)	Unit:	Default: hex	Attribute: A
Size: 4 bytes (INT32)	Access: RW	•	PDO map: Not possible

- This object sets the threshold 2 setting for the Sensor Amplifier with the unit number that is specified by the index.
- Threshold 2 is used as the high threshold in Area Detection Mode.
- The setting range of the FA□0, LA0, SA0, CA0, MA0, FAH0 or EA□0 is −1,999 to 9,999 (FFFFF831 to 0000270F hex).
- The setting range for the TA0, AA□0 or VA□0 is −19,999,999 to 99,999,999 (FECED301 to 05F5E0FF hex).
- The setting range of VD□0 is –9999 to 9999 (FFFFD8F1Hex-0000270FHex).
- * It will take some time for the changed threshold to take effect.

 Please wait at least 300 ms after changing the threshold in the case of confirming the threshold value.

4006 + (N-1) × 80 No_01 30 S	No_01 30 Sensor Status						
Subindex 0: Number of Entries							
Range: 01 hex	Unit:	Jnit: Default: 01 hex Attribute:					
Size: 1 byte (U8)	•	Access: RO		PDO map: Not possible			
Subindex 1: No_01 30 Sensor Status							
Range: 0000 to FFFF hex	Unit:	Default: hex			Attribute:		
Size: 2 bytes (U16)	•	Access: RO		PDO map: N	Not possible		

• This object reads the status of the Sensor with the unit number that is specified by the index.

Data	Sensor Status
Bit 00	Normal operation (This bit is normally set to 1, and changes to 0 if the bits 08 on change to 1.)
Bit 01	CH1 DPC status (This bit is set to "1" when the DPC is ON, and "0" when the DPC is OFF.)
Bit 02	CH1 Smart Tuning Status (This bit is set to "1" when ST is ON, and "0" when ST is OFF.)
Bit 03	CH2 DPC status (This bit is set to "1" when the DPC is ON, and "0" when the DPC is OFF.) * MA0 only
Bit 04	CH2 Smart Tuning Status (This bit is set to "1" when ST is ON.) * MA0 only
Bit 05 to 07	Not used.
Bit 08	DPC error (FA□0, LA0, MA0, or FAH0)
Bit 09	EEPROM error (all models) *Execute Sensor Initialization [4042 + (N-1) × 80 Hex] and then execute Sensor Reset [3010 Hex]. If the error remains, the error is caused by memory failure such as rewrite count exceeded. Please replace the amplifier unit.
Bit 10	Load short-circuit error (all models)
Bit 11	Head-related error (SA0/TA0)
Bits 12 to 15	Not used.

Reset Level			
Unit:	Default: 02 hex	Attribute:	
Access: RO		PDO map: Not possible	
vel IN1		•	
Unit:	Default: hex	Attribute:	
Access: RO	-	PDO map: Not possible	
vel IN2		·	
Unit:	Default: hex	Attribute:	
Access: RO	•	PDO map: Not possible	
	Access: RO vel IN1 Unit: Access: RO vel IN2 Unit:	Unit: Default: 02 hex Access: RO Vel IN1 Unit: Default: hex Access: RO Vel IN2 Unit: Default: hex	

This object reads the zero reset level for the Sensor Amplifier with the unit number that is specified by the index.

 This object sets the output mode for the Sensor Amplifier with the unit number that is specified by the index.

Doto	Setting						
Data	Output 1 (subindex 1)	Output 2 (subindex 2)*1					
0000 hex	Normal Detection Mode	Normal Detection Mode					
0001 hex	Area (window comparator) detection mode	Alarm Output Mode (FA□0/LA0/FAH0/EA□0)					
0002 hex	Differential detection mode (FA□0/EA□0) Peak detection mode (VD□0)	Error Output Mode (FA□0/LA0/SA0/CA0/FAH0/EA□0/AA□0/VA□0)					
0003 hex	Hold Mode (SA0 only) Peak bottom detection mode AND (VD□0)	Differential detection mode (FA□0) AND detection mode (CA0/MA0) Disconnection detection output mode (EA□0)					
0004 hex	Peak bottom detection mode OR (VD□0)	OR detection mode (CA0/MA0) Inverted Error Output Mode (EA□0)					
0005 hex	Difference detection mode (VD□0)	XOR detection mode (MA0) Inverted Disconnection Detection Output Mode (EA□0)					
0006 hex	Not used.	GAP detection mode (MA0)					
0007 hex	Not used.	Rise synchronization detection mode (MA0)					
0008 hex	Not used.	Fall synchronization detection mode (MA0)					
0009 hex	Not used.	Area (winndow comparator) detection mode (MA0/AA□0/VA□0)					

- *1 Output 2 of the E9NC-VD□0 will be EEPROM error output. This setting cannot be changed.
- The previous value is retained if a measurement error occurs in Hold Mode.
- The TA0 does not have output 2.
- The CA0 does not have output 1.

4009 + (N-1) × 80 hex	No_01 30 Detection Level (4 Bytes)						
Subindex 0: Numbe	r of Entries						
Range: 01 hex	U			Default: 01 hex	Default: 01 hex		
Size: 1 byte (U8)			Access: RO		PDO map: Not possible		
Subindex 1: No_01	30 Detection Leve	l (4 By	tes)				
Range: -2,147,483,648 to 2,147,483,647 (80000000 to 7FFFFFF hex)		Unit:	Unit: Default: hex			Attribute:	
Size: 4 bytes (INT32)			Access: RO		PDO map: F	Possible	

- This object reads four bytes of the detection level (amount of incident light) for the Sensor Amplifier with the unit number that is specified by the index.
- The FA₀, LA0, SA0, and CA0 do not use this object.

400A + (N-1) × 80 No_01 30 Operating Mode hex						
Subindex 0: Number of Entries						
Range: 02 hex	Unit:		Default: 02 hex		Attribute:	
Size: 1 byte (U8)	Size: 1 byte (U8) Access: RO PDO map: Not possible					
Subindex 1: No_01 30 Operating N	ode IN1					
Range: 0000 to FFFF hex	Unit:		Default: hex		Attribute: A	
Size: 2 bytes (U16)	Size: 2 bytes (U16) Access: RW PDO map: Not possible					
Subindex 2: No_01 30 Operating Mode IN2						
Range: 0000 to FFFF hex Unit: Default: hex Attribute: A					Attribute: A	
Size: 2 bytes (U16) Access: RW PDO map: Not possible					Not possible	

• This object sets the operating mode of the Sensor with the unit number that is specified by the index.

Data	Setting
0000 hex	Light ON/Normally Open
0001 hex	Dark ON/Normally Close
0002 to FFFF hex	Not used.

400B + (N-1) × 80 hex No_01 30 Detec	tion Function		
Subindex 0: Number of Entries			
Range: 02 hex	Unit:	Default: 02 hex	Attribute:
Size: 1 byte (U8)	Access: RO		PDO map: Not possible
Subindex 1: No_01 30 Detection Function IN	11		•
Range: 0000 to FFFF hex	Unit:	Default: hex	Attribute: A
Size: 2 bytes (U16)	Access: RW	•	PDO map: Not possible
Subindex 2: No_01 30 Detection Function IN	12		•
Range: 0000 to FFFF hex	Unit:	Default: hex	Attribute: A
Size: 2 bytes (U16)	Access: RW	•	PDO map: Not possible

• This object sets the operating mode of the Sensor with the unit number that is specified by the index.

Data	Setting							
Data	FA=0/LA0/SA0/TA0/CA0/MA0/FAH0/EA=0	AA□0/VA□0	VD□0					
0000 hex	SHS (super high speed)	1 ms	300 µs					
0001 hex	HS (high speed)	10 ms	500 μs					
0002 hex	STND (standard)	100 ms	1 ms					
0003 hex	GIGA (high resolution)	500 ms	5 ms					
0004 hex	Not used.	1 s	Not used.					
0005 hex	Not used.	10 s	Not used.					
0006 hex	Not used.	30 s	Not used.					
0007 hex	Not used.	60 s	Not used.					
0008 to FFFF hex	Not used.	Not used.	VD□0					

On the CA0, SHS (fastest) cannot be selected when the detection method is set to color mode.

0 × 400C + (N-1) × 80 hex No_01 30 Diffir	nition Fur	nction Threshold			
Subindex 0: Number of Entries					
Range: 02 hex	Unit:		Default: 02 hex		Attribute:
Size: 1 byte (U8)		Access: RO		PDO map: Not poss	
Subindex 1: No_01 30 Diffinition Function 7	hreshold	d IN1		•	
Range: 8000 0000 hex to 7FFF FFFF hex	Unit: -		Default: hex Attri		Attribute: A
Size: 4 bytes (INT32)		Access: RW		PDO map: I	Not possible
Subindex 2: No_01 30 Diffinition Function 7	hreshold	d IN2			
Range: 8000 0000 hex to 7FFF FFFF hex	Unit:		Default: hex Attril		Attribute: A
Size: 4 bytes (INT32)		Access: RW	ss: RW PDO map: Not		Not possible
0 1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

- Set the threshold for differential output of the unit number specified by the index.
- The setting range is -1,999 to 1,999.

0 × 400D + (N-1) × 80 hex No_01 30 Diffin	ition Fu	nction Response Tir	me			
Subindex 0: Number of Entries						
Range: 02 hex	Unit:		Default: 02 hex		Attribute:	
Size: 1 byte (U8)		Access: RO		PDO map: N	map: Not possible	
Subindex 1: No_01 30 Diffinition Function F	espons	e Time IN1				
Range: 0000 to FFFF hex	Unit:		Default: hex		Attribute: A	
Size: 2 bytes (U16)		Access: RW		PDO map: Not possible		
Subindex 2: No_01 30 Diffinition Function F	espons	e Time IN2				
Range: 0000 to FFFF hex	Unit:		Default: hex		Attribute: A	
Size: 2 bytes (U16)		Access: RW		PDO map: Not possible		

• Set the threshold for differential output of the unit number specified by the index.

Data	Setting
0001 hex	Response Time 250 µS
0002 hex	Response Time 500 μS
0003 hex	Response Time 1 mS
0004 hex	Response Time 10 mS
0005 hex	Response Time 100 mS

$0 \times 400E + (N-1) \times 80 \text{ hex } No_01$. 30 Timer Functio	n				
Subindex 0: Number of Entries						
Range: 02 hex	Unit: -		Default: 02 hex		Attribute:	
Size: 1 byte (U8)		Access: RO		PDO map:	ap: Not possible	
Subindex 1: No_01 30 Timer Fund	tion IN1					
Range: 0000 to FFFF hex	Unit:		Default: hex		Attribute: A	
Size: 2 bytes (U16)		Access: RW		PDO map: Not possible		
Subindex 2: No_01 30 Timer Fund	tion IN2					
Range: 0000 to FFFF hex	Unit:		Default: hex		Attribute: A	
Size: 2 bytes (U16)	·	Access: RW		PDO map:	Not possible	

• This object sets the timer function of the Sensor with the unit number that is specified by the index.

Data	Setting	Compatible models										
Dala	Setting	FA□0	LA0	SA0	TA0	CA0	MA0	FAH0	EA□0	AA□0	VA□0	VD□0
0000 hex	Timer Function OFF	V	V	V	$\sqrt{}$	V		V	V	V	V	$\sqrt{}$
0001 hex	OFFD (OFF delay)	V	V	V	√	V	V	V	V	V	V	√
0002 hex	ON-D (ON delay)	V	V	V	√	V	V	V	V	V	V	√
0003 hex	SHOT (one-shot)	V	V	V	√	V	V	V	V	V	V	√
0004 hex	ONOFF (ON delay+OFF delay)	1	1	1	1	1	1	1	1	-	-	-
0005 -00FF hex	Not used.	-	-	-	-	-	-	-	-	-	-	-

400F + (N-1) × 80 hex No_01 30 Tin	ner Value 1				
Subindex 0: Number of Entries					
Range: 02 hex	Unit:	Default: 02 hex	Α	ttribute:	
Size: 1 byte (U8)	Access: R	0	PDO map: Not	nap: Not possible	
Subindex 1: No_01 30 Timer Value 1 IN1					
Range: 00000001 hex to 00018696 hex	Unit:	Default: hex	Α	ttribute: A	
Size: 4 bytes (U32)	Access: R	N	PDO map: Not possible		
Subindex 2: No_01 30 Timer Value 1 IN2	•				
Range: 00000001 hex to 00018696 hex	Unit:	Default: hex	A	ttribute: A	
Size: 4 bytes (U32)	Access: R	W	PDO map: Not possible		

- This object sets the timer value 1 of the Sensor with the unit number that is specified by the index.
- Timer value 1 is used for the ON delay or the one-shot timer.
- The setting units for the FA□0, LA0, SA0, TA0, MA0, FAH0, EA0, AA□0, VA□0, VD□0 are 1 ms, and the setting range is 1 to 9999 (00000001 to 0x0000270F Hex).

For the CA0, the settings are selected in increments of 1 (units of 0.1 ms) from 0.1 ms to 0.5 ms, in increments of 5 (units of 0.5 ms) from 0.5 ms to 5 ms, and in increments of 10 (units of 1ms) from 5 ms to 9999 ms.

The setting range is 1 to 99990 (0x00000001 to 0x00018696 Hex).

4010 + (N-1) × 80 No_01 30 Timer Value 2									
Subindex 0: Number of Entries									
Range: 02 hex	Unit:		Default: 02 hex Attribute:		Attribute:				
Size: 1 byte (U8)		Access: RO	Access: RO		lot possible				
Subindex 1: No_01 30 Timer Value 2	Subindex 1: No_01 30 Timer Value 2 IN1								
Range: 00000001 hex to 00018696 hex	Unit:		Default: hex		Attribute: A				
Size: 4 bytes (U32)		Access: RW		PDO map: Not possible					
Subindex 2: No_01 30 Timer Value 2 IN2									
Range: 00000001 hex to 00018696 hex	Unit:		Default: hex Attribute: A		Attribute: A				
Size: 4 bytes (U32)		Access: RW	Access: RW PDO map: Not possib						

- This object sets the timer value 2 of the Sensor with the unit number that is specified by the index.
- Timer value 2 is used for the OFF delay.
- The setting units for the FA□0, LA0, SA0, TA0, MA0, FAH0, EA0, AA□0, VA□0, VD□0 are 1 ms, and the setting range is 1 to 9999 (00000001 to 0x0000270F Hex).

For the CA0, the settings are selected in increments of 1 (units of 0.1 ms) from 0.1 ms to 0.5 ms, in increments of 5 (units of 0.5 ms) from 0.5 ms to 5 ms, and in increments of 10 (units of 1ms) from 5 ms to 9999 ms.

The setting range is 1 to 99990 (0x00000001 to 0x00018696 Hex).

4011 + (N-1) × 80 No_01 30 DP hex										
Subindex 0: Number of Entries										
Range: 02 hex	Unit:		Default: 02 hex		Attribute:					
Size: 1 byte (U8)		Access: RO	PDO map: N		Not possible					
Subindex 1: No_01 30 DPC Setting IN1 and Display Digits										
Range: 0000 hex to FFFF hex	Unit:		Default: hex		Attribute: A					
Size: 2 bytes (U16)		Access: RW	PDO map: Not possible		Not possible					
Subindex 2: No_01 30 DPC Setting IN2										
Range: 0000 hex to FFFF hex	Unit:		Default: hex		Attribute: A					
Size: 2 bytes (U16)	Access: RW		PDO map: Not possible		Not possible					

• This object sets the DPC setting and number of display digits of the Sensor with the unit number that is specified by the index.

DPC Setting

Data	Setting
0000 hex	DPC OFF
0001 hex	DPC ON
0002 to FFFF hex	Not used.

Display Digits Setting

. , ,	
Data	Setting
0000 hex	4 digits
0001 hex	3 digits
0002 hex	2 digits
0003 hex	1 digit
0004 hex	0 digit
0005 to FFFF hex	Not used.

• This object sets the Amplifier display of the Sensor with the unit number that is specified by the index.

Data	Setting	Torget Sensor Amplifier						
Data	Y = 0	Y = 1	Target Sensor Amplifier					
000Y0000 hex	Threshold level/detection level [Std]	Solution Viewer (*)	FA□0 MA0	LA0 FAH0	SA0 EA□0	CA0 AA□0	VA□0	- VD□0
000Y0001 hex	Margin in detection level with respect to the threshold level [PEr]		FA□0 MA0	LA0 FAH0	SA0 EA□0	-	-	-
000Y0002 hex	The smallest peak value of incident light and the largest bottom value of interrupted light [P-b]		FA□0 MA0	LA0 FAH0	SA0 EA□0	- AA□0	VA□0	- VD□0
000Y0003 hex	Bar graph display [bAr]		FA□0 MA0	LA0 FAH0	SA0 EA□0	-	-	-
000Y0004 hex	Detection level at peak [PEAK]		FA□0 MA0	LA0 FAH0	SA0 EA□0	-	-	-
000Y0005 hex	Channel number and detection level [ch]		FA□0 MA0	LA0 FAH0	SA0 EA□0	CA0 AA□0	VA□0	- VD□0
000Y0007 hex	Change finder [CFdr]		FA□0 MA0	LA0 FAH0	-	-	-	-
000Y0008 hex	RGB display [rGb]		-	-	-	CA0	-	-
	Ch1 detection level or Ch2 detection level display [dGdG]		- MA0	-	-	-	-	-
Other values	Not used.							

The detection level in the above table is the amount of incident light or the amount of change at the Sensor Amplifier.

* If you operate the Amplifier after you set the Solution Viewer, the display changes to the display for the rightmost digit.

Example: 0001 0000 hex -> Display mode changes to Solution Viewer -> Amplifier Unit operation -> Display mode changes to threshold/detection level [Std].

- * The SA0, the AA \square 0, the VA \square 0, and the VD \square 0 do not support Solution Viewer.
- On the CA0, the solution viewer cannot be selected when the detection method is set to color mode.

4013 + (N-1) × 80 No_01 30 Invertible	No_01 30 Inverted Display								
Subindex 0: Number of Entries									
Range: 01 hex	Unit:		Default: 01 hex		Attribute:				
Size: 1 byte (U8)		Access: RO		PDO map: Not possible					
Subindex 1: No_01 30 Inverted Disp	Subindex 1: No_01 30 Inverted Display								
Range: 0000 to FFFF hex	Unit:	Default: hex			Attribute: A				
Size: 2 bytes (U16)		Access: RW		PDO map: N	lot possible				

• This object sets the Amplifier display direction of the Sensor with the unit number that is specified by the index.

Data	Setting		
0000 hex	Inverted display OFF		
0001 hex	Inverted display ON		
0002 to FFFF hex	Not used.		

4014 + (N-1) × 80 No_01 30 Cha	No_01 30 Channel Display						
Subindex 0: Number of Entries							
Range: 01 hex	Unit: Default: 01 hex Attribute:						
Size: 1 byte (U8)	Access: RO PDO map: Not possible			Not possible			
Subindex 1: No_01 30 Channel Display							
Range: 0000 to 0001 hex	1 hex Unit: Default: hex Attribute: A						
Size: 2 bytes (U16)	(U16) Access: RW PDO map: Not possible						

• This object sets the channel display of the Sensor with the unit number that is specified by the index.

Data	Setting			
0000 hex	Channel display OFF			
0001 hex	Channel display ON			

• A value of 0000 hex is always read for this object.

4015 + (N-1) × 80 No_01 30 Eco F	No_01 30 Eco Function Setting						
Subindex 0: Number of Entries							
Range: 01 hex	Unit: Default: 01 hex Attribute:						
Size: 1 byte (U8)	Access: RO PDO map: Not possible						
Subindex 1: No_01 30 Eco Function Setting							
Range: 0000 to FFFF hex	F hex Unit: Default: 0000 hex Attribute: A						
Size: 2 bytes (U16)	Access: RW PDO map: Not possible						

• This object sets the eco mode of the Sensor with the unit number that is specified by the index.

Data	Setting
0000 hex	Eco function OFF
0001 hex	Eco function ON
0002 hex	Eco function LO
0003 to FFFF hex	Not used.

4016 + (N-1) × 80 No_01 30 K	No_01 30 Key Lock Setting						
Subindex 0: Number of Entries							
Range: 01 hex	Unit: Default: 01 hex Attribute:						
Size: 1 byte (U8)	Access: RO PDO map: Not possible						
Subindex 1: No_01 30 Key Lock Setting							
Range: 0000 to FFFF hex	F hex Unit: Default: hex Attribute: A						
Size: 2 bytes (U16)	Access: RW PDO map: Not possible						

• This object sets the key lock setting of the Sensor with the unit number that is specified by the index.

Data	Setting
0000 hex	Key Lock OFF
0001 hex	Key Lock ON
0002 to FFFF hex	Not used.

4017 + (N-1) × 80 No_01 30 Displate	No_01 30 Display Blinking						
Subindex 0: Number of Entries							
Range: 01 hex	Unit: Default: 01 hex Attribute:						
Size: 1 byte (U8)		Access: RO			PDO map: Not possible		
Subindex 1: No_01 30 Display Blinking							
Range: 0000 to 0001 hex	ex Unit: Default: hex Attribute: A						
Size: 2 bytes (U16)	es (U16) Access: RW PDO map: Not possible						

- This object sets the blinking setting of the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to write data. It is always set to 0000 hex when reading data.

 This object sets the hysteresis width setting of the Sensor with the unit number that is specified by the index.

Data	Setting
0000 hex	Standard
0001 hex	User setting
0002 to FFFF hex	Not used.

4021 + (N-1) × 80 No_01 30 Hysteresis Width 1 hex								
Subindex 0: Number of Entries								
Range: 02 hex	Unit:		Default: 02 hex		Attribute:			
Size: 1 byte (U8)		Access: RO		PDO map: N	lot possible			
Subindex 1: No_01 30 IN1								
Range: 00000000 to 05F5E0FF hex	Unit:		Default: - hex		Attribute: A			
Size: 4 bytes (U32)		Access: RW		PDO map: N	lot possible			
Subindex 2: No_01 30 IN2								
Range: 00000000 to 05F5E0FF hex Unit: Default: - hex Attribute: A								
Size: 4 bytes (U32) Access: RW PDO map: Not possible								

- This object sets the Hysteresis Width 1 setting of the Sensor with the unit number that is specified by the index.
- EA□0, AA□0 or VA□0 is assigned to the hysteresis width of normal detection mode and the high/low hysteresis width of area detection mode.
- The setting range for FA□0, LA0, SA0, FAH0 or EA0 is 0 to 9999 (00000000 to 0000270F hex).
- The setting range for the AA□0 or VA□0 is 0 to 99999999 (00000000 hex to 05F5E0FF hex).

4022 + (N-1) × 80 No_01 30 Hysteresis Width 2								
hex								
Subindex 0: Number of Entries								
Range: 01 hex	Unit:	Default: 01 hex	Attribute:					
Size: 1 byte (U8)	ize: 1 byte (U8) Access: RO PDO map: Not possible							
Subindex 1: No_01 30 IN1								
Range: 00000000 to 05F5E0FF hex	Unit:	Default: - hex	Attribute: A					
Size: 4 bytes (U32)	Size: 4 bytes (U32) Access: RW PDO map: Not possible							
Subindex 2: No_01 30 IN2								
Range: 00000000 to 05F5E0FF hex Unit: Default: - hex Attribute: A								
Size: 4 bytes (U32) Access: RW PDO map: Not possible								

- This object sets the Hysteresis Width 2 high setting of the Sensor with the unit number that is specified by the index.
- FA=0, LA0, SA0 or FAH0 is assigned to IN1 of normal detection mode and the high/low hysteresis width of area detection mode by Subindex 1.
- MA0 is assigned to the hysteresis width of normal detection mode and the high/low hysteresis width of area detection mode.
- The setting range for the FA□0, LA0, SA0, MA0 or FAH0 is 0 to 9999 (00000000 to 0000270F hex).
- The setting range for the TA0 is 0 to 99999999 (00000000 to 05F5E0FF hex).

4023 + (N-1) × 80 hex	No_01 to 30 Keep Setting / Mutual interference prevention units setting*1/External input setting change *1/Sensor off setting *1					
Subindex 0: Number	r of Entries					
Range: 01 hex	Unit: Default: 01 hex Attribute:					
Size: 1 byte (U8)	Access: RO PDO map: Not possible					lot possible
Subindex 1: No_01	Subindex 1: No_01 30 Keep Setting/ Mutual interference prevention units setting *1/External input setting change *1/Sensor off setting *1					
Range: 0000 to FFF	F hex Unit: Default: hex Attribute: A					
Size: 2 bytes (U16)	Size: 2 bytes (U16) Access: RW PDO map: Not possible					lot possible

^{*1} Supported from E3NW-ECT Ver. 1.08

• This object sets the keep setting of the Sensor with the unit number that is specified by the index.

		Se	Setting				
Data	Keep Setting	Mutual Interference setting	External input setting change	Sensor OFF setting			
	SA0	EA□0	VD□0	FA□0/MA0			
0000 hex	Keep OFF	Mutual Interference OFF	External input OFF	OFF			
0001 hex	Keep ON	Mutual Interference 2 Units	Tuning	ON			
0002 hex	Not used.	Mutual Interference 3 Units	Not used.	Not used.			
0003 hex	Not used.	Mutual Interference 4 Units	Not used.	Not used.			
0004 hex	Not used.	Mutual Interference 5 Units	Zero reset	Not used.			
0005 hex	Not used.	Not used.	Not used.	Not used.			
0006 hex	Not used.	Not used.	Synchronized detection END output setting	Not used.			
0007 hex	Not used.	Not used.	Not used.	Not used.			
0008 hex	Not used.	Not used.	Not used.	Not used.			
0009 hex	Not used.	Not used.	Synchronized detection immediate output setting	Not used.			
0010-FFFF hex	Not used.	Not used.	Not used.	Not used.			

^{*} During sensor OFF operation, commands other than an SDO command that cancels light emission OFF cannot be received. Please cancel light emission OFF before canceling sensor OFF.

4024 + (N-1) × 80 No_01 30 F	lold Mode S	setting / Zero reset a	automatic following		
Subindex 0: Number of Entries					
Range: 01 hex	Unit:		Default: 01 hex		Attribute:
Size: 1 byte (U8)	•	Access: RO		PDO map: I	Not possible
Subindex 1: No_01 30 Hold Mod	e Setting				
Range: 0000 to FFFF hex	Unit:		Default: hex		Attribute: A
Size: 2 bytes (U16)	<u> </u>	Access: RW	•	PDO map: I	Not possible

• This object sets the keep setting of the Sensor with the unit number that is specified by the index.

	Setting			
Data	Hold Mode Setting	Zero reset automatic following		
	SA0	VD□0		
0000 hex	Peak	Zero reset automatic following OFF		
0001 hex	Bottom	Zero reset automatic following ON		
0002 to FFFF hex	Not used.	Not used.		

• This object is enabled only when output 1 mode.

4025 + (N-1) × 80 No_01 3	No_01 30 Alarm Output Level Setting					
hex						
Subindex 0: Number of Entries						
Range: 01 hex	Unit:		Default: 01 hex		Attribute:	
Size: 1 byte (U8)		Access: RO		PDO map: Not possible		
Subindex 1: No_01 30 Alarm	Output Level S	etting				
Range: 0000 to 0064 hex	Unit:		Default: hex		Attribute: A	
Size: 2 bytes (U16)		Access: RW		PDO map:	Not possible	

[•] This object sets the alarm output level of the Sensor with the unit number that is specified by the index.

- This object executes the maximum sensitivity tuning for the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to write data. It is always set to 0000 hex when reading data.
- Allow at least 3 seconds for processing to be completed after executing full auto tuning setup.

4031 + (N-1) × 80 No_01 30 Zero	Reset				
hex					
Subindex 0: Number of Entries					
Range: 02 hex	Unit:		Default: 02 hex		Attribute:
Size: 1 byte (U8)		Access: RO		PDO map: N	lot possible
Subindex 1: No_01 30 Zero Reset IN	1				_
Range: 0000 to 0001 hex	Unit:		Default: hex		Attribute: A
Size: 2 bytes (U16)		Access: RW		PDO map: N	lot possible
Subindex 2: No_01 30 Zero Reset IN	2				
Range: 0000 to 0001 hex	Unit:		Default: hex		Attribute: A
Size: 2 bytes (U16)		Access: RW		PDO map: N	lot possible

- This object executes the zero reset for the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to execute and 0000 hex to reset.
- On the CA0, zero reset cannot be executed when the detection method is set to color mode.

4032 + (N-1) × 80 No_01 30 P	rojection Lig	hting OFF		
hex				
Subindex 0: Number of Entries				
Range: 02 hex	Unit:		Default: 02 hex	Attribute:
Size: 1 byte (U8)		Access: RO		PDO map: Not possible
Subindex 1: No_01 30 Projection	Lighting Of	F IN1		·
Range: 0000 to 0001 hex	Unit: -		Default: hex	Attribute: A
Size: 2 bytes (U16)		Access: RW		PDO map: Not possible
Subindex 2: No_01 30 Projection	Lighting Of	F IN2		·
Range: 0000 to 0001 hex	Unit: -		Default: hex	Attribute: A
Size: 2 bytes (U16)	Access: RW		•	PDO map: Not possible

- This object turns OFF the emitted light for the Sensor with the unit number that is specified by the index
- It is always set to 0000 hex when reading data.

Data	Setting		
0000 hex	Light emission ON		
0001 hex	Light emission OFF		

• During light emission OFF operation, commands other than an SDO command that cancels light emission OFF cannot be received.

4033 + (N-1) × 80 No_01 30 2-poi	nt Tunir	ng (1st point)			
Subindex 0: Number of Entries					
Range: 02 hex	Unit:		Default: 02 hex		Attribute:
Size: 1 byte (U8)	1 byte (U8) Access: RO PDO map: Not possible				Not possible
Subindex 1: No_01 30 2-point Tuning	g(1st po	int) IN1			
Range: 0000 to 0001 hex	Unit:		Default: hex		Attribute: A
Size: 2 bytes (U16)		Access: RW		PDO map: N	Not possible
Subindex 2: No_01 30 2-point Tuning	g(1st po	int) IN2			
Range: 0000 to 0001 hex Unit: Default: hex Attribute: A					
Size: 2 bytes (U16)		Access: RW		PDO map: N	Not possible

- This object executes the first point of two-point tuning for the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to execute and 0000 hex to reset.
- A value of 0000 hex is always read for this object.

4034 + (N-1) × 80 No_01 30 2- hex	point Tunir	ng (2nd point)			
Subindex 0: Number of Entries					
Range: 02 hex	Unit:		Default: 02 hex		Attribute:
Size: 1 byte (U8)	Access: RO PDO map: Not possible				Not possible
Subindex 1: No_01 30 2-point Tur	ning(2nd p	oint) IN1			
Range: 0000 to 0001 hex	Unit:		Default: hex		Attribute: A
Size: 2 bytes (U16)		Access: RW	PDO map: Not possible		Not possible
Subindex 2: No_01 30 2-point Tur	ning(2nd p	oint) IN2			
Range: 0000 to 0001 hex Unit: Default: hex Attribute: A					
Size: 2 bytes (U16)		Access: RW		PDO map:	Not possible

- This object executes the second point of two-point tuning for the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to write data. It is always set to 0000 hex when reading data.
- Execute the first point of 2-point tuning first.

4035 + (N-1) × 80 No_01 30 hex	Position Tuning			
Subindex 0: Number of Entries				
Range: 02 hex	Unit:	Default: 02 hex	Attribute:	
Size: 1 byte (U8)	Access: R0)	PDO map: Not possible	
Subindex 1: No_01 30 Position	Tuning IN1		•	
Range: 0000 to 0001 hex	Unit:	Default: hex	Attribute: A	
Size: 2 bytes (U16)	Access: R\	V	PDO map: Not possible	
Subindex 2: No_01 30 Position	Tuning IN2			
Range: 0000 to 0001 hex	Unit:	Default: hex	Attribute: A	
Size: 2 bytes (U16)	Access: R\	N .	PDO map: Not possible	

- This object executes the position tuning command for the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to write data. It is always set to 0000 hex when reading data.
- For FA□0, LA0, MA0 or FAH0, the Two-point Tuning First Point command must be executed before this command is sent.

4036 + (N-1) × 80 No_01 30 Full	-auto Tur	ning Setup			
hex					
Subindex 0: Number of Entries					
Range: 02 hex	Unit:		Default: 02 hex		Attribute:
Size: 1 byte (U8)	Access: RO PDO map: Not possible				Not possible
Subindex 1: No_01 30 Full-auto Tu	ning Setu	ıp IN1		•	
Range: 0000 to 0001 hex	Unit:		Default: hex		Attribute: A
Size: 2 bytes (U16)		Access: RW	PDO map: Not possible		Not possible
Subindex 2: No_01 30 Full-auto Tu	ning Setu	ıp IN2			
Range: 0000 to 0001 hex	Unit: Default: hex Attribute: A				
Size: 2 bytes (U16)		Access: RW		PDO map: N	Not possible

- This object executes the Full-auto tuning setup command for the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to execute and 0000 hex to reset.
- It is always set to 0000 hex when reading data.

4037 + (N-1) × 80 No_01 30 Fu	ıll-auto Tur	ning			
hex					
Subindex 0: Number of Entries					
Range: 02 hex	Unit:		Default: 02 hex	Attribute:	
Size: 1 byte (U8)		Access: RO		PDO map: Not possible	
Subindex 1: No_01 30 Full-auto T	uning IN1			•	
Range: 0000 to 0001 hex	Unit:		Default: hex	Attribute: A	
Size: 2 bytes (U16)		Access: RW		PDO map: Not possible	
Subindex 2: No_01 30 Full-auto T	uning IN2			•	
Range: 0000 to 0001 hex	Unit:		Default: hex	Attribute: A	
Size: 2 bytes (U16)		Access: RW	<u> </u>	PDO map: Not possible	

- This object executes the full-auto tuning for the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to write data. It is always set to 0000 hex when reading data.
- Allow at least 7 seconds for processing to be completed after executing full auto tuning setup.

4038 + (N-1) × 80 No_01 30 Per hex	No_01 30 Percentage Tuning Setting and Origin Point Use Setting*1/Distinction Mode*2					
Subindex 0: Number of Entries						
Range: 02 hex			Default: 02 hex		Attribute:	
Size: 1 byte (U8)		Access: RO		PDO map: Not possible		
Subindex 1: No_01 30 Percentage Tuning Setting IN1 and Origin Point Use Setting*1/Distinction Mode*2						
Range: 0000 hex to FFFF hex Unit: -			Default: hex		Attribute: A	
Size: 2 bytes (U16)		Access: RW		PDO map: Not possible		
Subindex 2: No_01 30 Percentage Tuning Setting IN2						
Range: 0000 to FFFF hex Unit: -		Default: hex			Attribute: A	
Size: 2 bytes (U16)		Access: RW		PDO map: Not possible		

- This object sets the percentage tuning setting and origin point use setting of the Sensor with the unit number that is specified by the index.
- *1 Items with asterisks are supported from E3NW-ECT version 1.03.
- *2 Items with asterisks are supported from E3NW-ECT version 1.06.
 You can check the version with object index 100A bex. (Refer to "A-1-4 Co

You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.) Percentage Tuning Setting

Data	Setting
0000 hex	Percentage tuning OFF
0001 hex	Percentage tuning ON
0002 to FFFF hex	Not used.

Origin Point Use Setting

Data	Setting
0000 hex	Origin point setting used.
0001 hex	Origin point setting not used.
0002 to FFFF hex	Not used.

Distinction Mode data

- * When writing, write the 1-byte value in accordance with the table below.
- * Output 2 cannot be set (the setting will be the same as output 1).
- * When reading, the upper byte indicates output 2, and the lower byte indicates the detection method of output 1.

Data	Setting
00 hex	Contrast (R + G + B light quantity distinction)
01 hex	Contrast (R)
02 hex	Contrast (G)
03 hex	Contrast (B)
04 hex	Color
Other data	Not used.

4039 + (N-1) × 80 No_01 30 Percentage Tuning Level / Preset Value*1 / Tuning level (CA0)*2 hex						
Subindex 0: Number of Entries						
Range: 02 hex	Unit: -		Default: 02 hex		Attribute:	
Size: 1 byte (U8)		Access: RO		PDO map: N	Not possible	
Subindex 1: No_01 30 Percentage Tuning Level IN1 / Preset Value*1 / Tuning level (CA0) IN1 *2						
Range*: -19,999,999 to 99,999,999 (FECED301 hex to 05F5E0FF hex)	Unit: -		Default: hex		Attribute: A	
Size: 4 bytes (INT32)	Size: 4 bytes (INT32)		Access: RW		Not possible	
Subindex 2: No_01 30 Percentage Tu	ning Le	vel IN2 / Tuning lev	rel (CA0) IN2 *2			
Range: -19,999,999 to 99,999,999 (FECED301 hex to 05F5E0FF hex)	Unit: -		Default: hex		Attribute: A	
Size: 4 bytes (INT32)		Access: RW		PDO map: N	Not possible	

- This object sets the percentage tuning level or preset value of the Sensor with the unit number that is specified by the index.
- The setting range for the percentage tuning level is -99 to 99 (0000FF9D hex to 00000063 hex).
- The setting range for the preset value is –19,999,999 to 99,999,999 (FECED301 hex to 05F5E0FF hex).
- *1 Items with asterisks are supported from E3NW-ECT version 1.03.
- *2 Items with asterisks are supported from E3NW-ECT version 1.06. You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)

403A + (N-1) × 80 No_01 30 Perce	(N-1) × 80 No_01 30 Percentage Tuning/1-point Tuning (CA0)*						
nex ex							
Subindex 0: Number of Entries							
Range: 02 hex	Range: 02 hex Unit: Default: 02 hex Attribute:						
Size: 1 byte (U8)	Access: RO PDO map: Not possible						
Subindex 1: No_01 30 Percentage Tu	ning IN	1 / 1-point Tuning*	IN1				
Range: 0000 to 0001 hex	Unit: -		Default: hex		Attribute: A		
Size: 2 bytes (U16)		Access: RW		PDO map: N	Not possible		
Subindex 2: No_01 30 Percentage Tuning IN2 / 1-point Tuning* IN2							
Range: 0000 to 0001 hex	000 to 0001 hex Unit: Default: hex Attribute: A						
Size: 2 bytes (U16)	•	Access: RW	•	PDO map: Not possible			

- This object executes the percent tuning command for the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to write data. It is always set to 0000 hex when reading data.
- * Items with asterisks are supported from E3NW-ECT version 1.06.

 You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)

403B + (N-1) × 80 No_01 30 Power Tuning Setting, Tolerance Setting High*, and Scaling Setting Low *2 hex							
Subindex 0: Number of Entries							
Range: 02 hex	Unit: -		Default: 02 hex		Attribute:		
Size: 1 byte (U8)		Access: RO		PDO map: N	lot possible		
Subindex 1: No_01 30 Power Tuning Setting IN1, Tolerance Setting High*, and Scaling Setting Low *2							
Range*: -1,999,999 to 9,999,999 Ur (FFE17B81 hex to 0098967F hex)			Defaults: hex		Attribute: A		
Size: 4 bytes (INT32)		Access: RW		PDO map: Not possible			
Subindex 2*: No_01 30 Power Tuning	Setting	g IN2		•			
ange*: -1,999,999 to 9,999,999			Default: hex		Attribute: A		
Size: 4 bytes (INT32)		Access: RW		PDO map: N	lot possible		

- This object sets the power tuning setting and tolerance setting high setting of the Sensor with the unit number that is specified by the index.
- The setting range for the tolerance setting high setting is –1,999,999 to 9,999,999 (FFE17B81 hex to 0098967F hex).
- *1 Items with asterisks are supported from E3NW-ECT version 1.03.
- *2 Items with asterisks are supported from E3NW-ECT version 1.08.

 You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)

Power Tuning Setting data

Data	Setting
00000000 hex	Power Tuning Setting ON
00000001 hex	Power Tuning Setting OFF
00000002 to FFFFFFF hex	Not used.

403C + (N-1) × 80 No_01 0 Power Tuning Level and Tolerance Setting Low*, and Scaling Setting High *2 hex							
Subindex 0: Number of Entries							
Range: 02 hex	Unit:		Default: 02 hex		Attribute:		
Size: 1 byte (U8)		Access: RO		PDO map: N	lot possible		
Subindex 1: No_01 30 Power Tuning Setting IN1 and Tolerance Setting High*, and Scaling Setting High *2							
Range*: -1,999,999 to 9,999,999 Unit: (FFE17B81 hex to 0098967F hex)		Defaults: hex			Attribute: A		
Size: 4 bytes (INT32)	ze: 4 bytes (INT32)		Access: RW		Not possible		
Subindex 2*: No_01 30 Power Tuning Level IN2							
Range*: -1,999,999 to 9,999,999 (FFE17B81 hex to 0098967 hex)	Unit:		Default: hex		Attribute: A		
Size: 4 bytes (INT32)	•	Access: RW		PDO map: N	Not possible		

- This object sets the power tuning level and tolerance setting low setting of the Sensor with the unit number that is specified by the index.
- The setting range is for the power tuning level is 100 to 9999 (00000064 hex to 0000270F hex).
- The setting range for the tolerance setting low setting is –1,999,999 to 9,999,999 (FFE17B81 hex to 0098967F hex).
- *1 Items with asterisks are supported from E3NW-ECT version 1.03.
- *2 Items with asterisks are supported from E3NW-ECT version 1.08.

 You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)

403D + (N-1) × 80 No_01 30 Power Tuning and Execute fine positioning *2 hex						
Subindex 0: Number of Entries						
Range: 02 hex	Unit:		Default: 02 hex		Attribute:	
Size: 1 byte (U8)	Access: RO PDO map: Not possible					
Subindex 1: No_01 30 Power Tuning	IN1 an	d Fine Positioning IN	√1 *2			
Range: 0000 to 0001 hex	Unit:		Default: hex		Attribute: A	
Size: 2 bytes (U16)		Access: RW		PDO map: N	lot possible	
Subindex 2 *1: No_01 30 Power Tuning IN2 and Fine Positioning IN2 *2						
Range: 0000 to 0001 hex	Unit: Default: hex Attribute: A					
Size: 2 bytes (U16)		Access: RW		PDO map: N	lot possible	

- This object executes power tuning for the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to write data. It is always set to 0000 hex when reading data.
- *1 Items with asterisks are supported from E3NW-ECT version 1.03. FA \square 0, FAH0, LA0, EA0 are not executed.
- *2 Items with asterisks are supported from E3NW-ECT version 1.08.

 You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)

403E + (N-1) × 80 No_01 30 1-point Tuning and Tolerance Tuning* hex							
Subindex 0: Number of Entries							
Range: 02 hex	Unit:		Default: 02 hex		Attribute:		
Size: 1 byte (U8)		Access: RO PDO map: Not possible					
Subindex 1: No_01 30 1-point Tur	ning IN1 an	d Tolerance Tuning	*				
Range: 0000 hex to 0001 hex	Unit:		Default: hex		Attribute: A		
Size: 2 bytes (U16)		Access: RW		PDO map: N	Not possible		
Subindex 2*: No_01 30 1-point Tuning IN2							
Range: 0000 to 0001 hex	Unit:	nit: Default: hex Attribute: A					
Size: 2 bytes (U16)		Access: RW		PDO map: N	Not possible		

- This object sets 1-point tuning and tolerance tuning of the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to execute. It is always set to 0000 hex when reading the data.
- If no sensing object is detected, it is necessary to wait at least 3 seconds after executing Full-auto Tuning Setup.
- * Items with asterisks are supported from E3NW-ECT version 1.03.

 You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)

4041 + (N-1) × 80 No_01 30) Flashing				
Subindex 0: Number of Entries					
Range: 02 hex	Unit:	Default: 02 hex	Attribute:		
Size: 1 byte (U8)	Access: RO	Access: RO PDO map: Not possible			
Subindex 1: No_01 30 Flashin	g IN1		·		
Range: 0000 to 0001 hex	Unit:	Default: hex	Attribute: A		
Size: 2 bytes (U16)	Access: RW	I	PDO map: Not possible		
Subindex 2: No_01 30 Flashin	g IN2		·		
Range: 0000 to 0001 hex	Unit:	Default: hex	Attribute: A		
Size: 2 bytes (U16)	Access: RW		PDO map: Not possible		

- This object executes the flashing command for the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to write data. It is always set to 0000 hex when reading data.
- During flashing operation, commands other than an SDO command that cancels flashing cannot be received.

4042 + (N-1) × 80 No_01 30 Se	No_01 30 Sensor Initialization					
Subindex 0: Number of Entries						
Range: 01 hex	Unit: Default: 01 hex Attribute:					
Size: 1 byte (U8)		Access: RO		PDO map: Not possible		
Subindex 1: No_01 30 Sensor Initialization						
Range: 0000 to 0001 hex	Unit:	Default: hex Attribute: A			Attribute: A	
Size: 2 bytes (U16)		Access: RW		PDO map: Not possible		

- This object executes the Sensor initialization command for the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to write data. It is always set to 0000 hex when reading data.
- To initialize the Sensor during operation, use this command to initialize the Sensor. Do not use the buttons on the Sensor.
- The channel display, display blinking, emission OFF, and flashing settings are not initialized when the Sensor is initialized.

4050 + (N-1) × 80 No_01 30 Self hex	No_01 30 Self Trigger Level and Scaling Setting/Writing to EEPROM setting *1					
Subindex 0: Number of Entries						
Range: 01 hex	Unit: Default: 01 hex Attribute:					
Size: 1 byte (U8)	Access: RO PDO map: Not possible			lot possible		
Subindex 1: No_01 30 Self Trigger L	evel and	Scaling Setting/Wr	iting to EEPROM setting *1			
Range: -1,999 to 9,999 (F831 to 270F hex)			Default: hex		Attribute: A	
Size: 2 bytes (INT16)	•	Access: RW	•	PDO map: N	lot possible	

- This object sets the self trigger level of the Sensor with the unit number that is specified by the index.
- *1 Writing to EEPROM setting (FA=0/MA0/TA0/EA=0)

Data	Setting
0000 hex	OFF
0001 hex	ON
0002 to FFFF hex	Not used.

4051 + (N-1) × 80 No_01 30 Tuning with workpiece absent							
hex							
Subindex 0: Number of Entries							
Range: 02 hex	Unit:		Default: 02 hex		Attribute:		
Size: 1 byte (U8)	Size: 1 byte (U8) Access: RO PDO map: Not possible						
Subindex 1: No_01 30 Tuning with we	orkpiec	e absent IN1					
Range: 0000 to 0001 hex	Unit:		Default: hex		Attribute: A		
Size: 2 bytes (U16)		Access: RW		PDO map: N	Not possible		
Sub-index 2: No_01 30 Tuning with w	orkpied	ce absent IN2					
Range: 0000 to 0001 hex Unit: Default: hex Attribute: A							
Size: 2 bytes (U16) Access: RW PDO map: Not possible					Not possible		

- This object executes the Tuning with workpiece absent command for the Sensor with the unit number that is specified by the index.
- Set this object to 0001 hex to write data. It is always set to 0000 hex when reading data.
- Execute the first point of 2-point tuning with workpiece absent first.

4052 + (N-1) × 80 No_01 30 hex	No_01 30 Background Removal						
Subindex 0: Number of Entries							
Range: 01 hex	Unit:		Default: 01 hex		Attribute:		
Size: 1 byte (U8)		Access: RO		PDO map: Not possible			
Subindex 1: No_01 30 Backgrou	und Remova			•			
Range: 0000 to FFFF hex	Unit:		Default: hex		Attribute: A		
Size: 2 bytes (U16)		Access: RW		PDO map: Not possible			

• This object sets the background suppression of the Sensor with the unit number that is specified by the index.

Data	Setting
0000 hex	Background removal OFF
0001 hex	Background removal ON
0002 to FFFF hex	Not used.

405F + (N-1) × 80 No_01 30 Detection	tion Level (CA0)			
Subindex 0: Number of Entries				
Range: 02 hex	Unit:	Default: 02 hex	Attribute:	
Size: 1 byte (U8)	Access: RO	•	PDO map: Not possible	
Subindex 1: No_01 30 Detection Leve	el (CA0) IN1		•	
Range: -1999 to 9999 (F831 to 270F hex)	Unit:	Default: hex	Attribute: A	
Size: 2 bytes (INT16)	Access: RO	•	PDO map: Not possible	
Subindex 2: No_01 30 Detection Lev	rel (CA0) IN2		-	
Range: -1999 to 9999 (F831 to 270F hex)	Unit:	Default: hex	Attribute: A	
Size: 2 bytes (INT16)	Access: RO		PDO map: Not possible	

- This object reads the detection level (incident light level) of the Sensor Amplifier with the unit number specified by the index.
- The FA₀, LA0, SA0, and TA0 cannot use this object.

Detection Level (RED)			
Unit:	Default: 01 hex	Attribute:	
Access: RO		PDO map: Not possible	
el (RED)			
Unit:	Default: hex	Attribute: A	
Access: RO	Access: RO PDO map: Not possible		
	Access: RO vel (RED) Unit:	Unit: Default: 01 hex Access: RO vel (RED) Unit: Default: hex	

• This object reads the red detection level (incident light level) of the Sensor Amplifier with the unit number specified by the index.

4061 + (N-1) × 80 hex	No_01 30 Color Detection Level (GREEN)						
Subindex 0: Number of Entries							
Range: 01 hex		Unit: -		Default: 01 hex		Attribute:	
Size: 1 byte (U8)			Access: RO		PDO map: Not possible		
Subindex 1: No_01 .	30 Color Detection	ı Level	(GREEN)				
Range: 0 to 9999 Unit: (0000 to 270F hex)				Default: hex		Attribute: A	
Size: 2 bytes (INT16) Access: RO					PDO map: N	lot possible	

• This object reads the green detection level (incident light level) of the Sensor Amplifier with the unit number specified by the index.

• This object reads the blue detection level (incident light level) of the Sensor Amplifier with the unit number specified by the index.

4063 + (N-1) × 80 No_01 30 Ch	No_01 30 Change Response Data pattern						
Subindex 0: Number of Entries							
Range: 01 hex	Unit: Default: 01 hex Attribute:						
Size: 1 byte (U8)	Access: RO			PDO map: Not possible			
Subindex 1: No_01 30 Change Re	esponse Da	ata pattern		-			
Range: 01 hex	Unit:		Default: hex		Attribute: A		
Size: 2 bytes (INT16)) Access: RW PDO map: Not possible						

• This object reads the pattern of the detection level (incident light level) of the Sensor with the unit number specified by the index.

Data	Setting						
Data	CA0	AA□0 / VA□0					
0000 hex	Reads the amount of detection level (incident light level) at the Sensor Amplifier in 1 ms.	Reads the input measurement value. (Before scaling & zero reset)					
0001 hex	Reads the amount of detection level (incident light level) at the Sensor Amplifier and the amount of RGB incident light at a cycle of 1 ms.*	Reads the displayed measurement value. (After scaling & zero reset)					

* The reading cycle and data are as follows.

The light levels read in the initial 2 bits of the 1st and 2nd bytes and the 3rd and 4th bytes are distinguished.

byte	3rd byte, 4th byte					1st byte, 2nd byte			
bit	31	30	29 to 16	15	14	13 to 0			
1st cycle	0	1	Received red light level	0	0	Sensor detection level (received level)			
2nd cycle	1	1	Received blue light level	1	0	Received green light level			
3rd cycle		Same as 1st cycle							
4th cycle		Same as 2nd cycle							
:									

• To set tuning information to a different amplifier (CA0 only)

• If you want to copy tuning information to another amplifier, read the index below in the original amplifier and write the information that is read to the other amplifier.

Write all index number items in the table below that apply to the detection method in order.

* Tuning information cannot be set for output 2. For details, see the detection method selection item (Index 4038 + (N - 1) × 80 Hex).

Index No	Name	Detection method			
IIIUEX NO	Name	Contrast	Color		
4038+(N-1)×80 hex	Detection method selection	1st	1st		
400B+(N-1)×80 hex	Detection function	2nd	2nd		
4064+(N-1)×80 hex	Tuning setting (1)	3rd	3rd		
4065+(N-1)×80 hex	Tuning setting (2)	4th	4th		
4066+(N-1)×80 hex	Tuning setting (3)	Not applicable	5th		
4067+(N-1)×80 hex	Tuning setting (4)	Not applicable	6th		
4068+(N-1)×80 hex	Tuning setting (5)	Not applicable	7th		
4004+(N-1)×80 hex	Threshold 1 setting	5th	8th		
4005+(N-1)×80 hex	Threshold 2 setting	6th	9th		

4064 + (N-1) × 80 No_01 30 Tunir hex	+ (N-1) × 80 No_01 30 Tuning Setting (1)							
Subindex 0: Number of Entries								
Range: 01 hex	Unit:		Default: 01 hex		Attribute:			
Size: 1 byte (U8)		Access: RO		PDO map: Not possible				
Subindex 1: No_01 30 Tuning Setting	g (1)							
Range: 0000 to FFFF hex	Unit:		Default: hex		Attribute: A			
Size: 2 bytes (U16) Access: RW PDO map: Not possible								

• If you want to set tuning information to a different amplifier, use this index.

4065 + (N-1) × 80 No_01 30 T	No_01 30 Tuning Setting (2)							
Subindex 0: Number of Entries								
Range: 01 hex	Unit: Default: 01 hex Attribute:							
Size: 1 byte (U8)	Access: RO		PDO map: Not possible					
Subindex 1: No_01 30 Tuning Setting (2)								
Range: 0000 to FFFF hex	Unit:	Default: hex	Attribute: A					
Size: 2 bytes (U16)	Access: RW	•	PDO map: Not possible					

• If you want to set tuning information to a different amplifier, use this index.

Unit: Access:	Default: 01 hex	Attribute:	
V ccocc.			
Access.	RO	PDO map: Not possible	
(3)		<u>.</u>	
Unit:	Default: hex	Attribute: A	
Access:	RW	PDO map: Not possible	
	Unit:	· /	

- * is supported from E3NW-ECT Ver 1.08
- The External input detection time range for the VD□0 is 5 to 9999 ms.
- If you want to set tuning information to a different amplifier, use this index.

4067 + (N-1) × 80 No_01 30 Tuning Setting (4) hex							
Subindex 0: Number of Entries							
Range: 01 hex	Unit:	nit: Default: 01 hex Attribute:					
Size: 1 byte (U8)	Access: RO		PDO map: Not possible				
Subindex 1: No_01 30 Tuning S	Setting (4)		<u>.</u>				
Range: 0000 to FFFF hex	Unit:	Default: hex	Attribute: A				
Size: 4 bytes (U32)	Access: RW		PDO map: Not possible				

• If you want to set tuning information to a different amplifier, use this index.

• If you want to set tuning information to a different amplifier, use this index.

4069 + (N-1) × 80 No_01 30 Light p	No_01 30 Light projection power (CA0)						
Subindex 0: Number of Entries							
Range: 01 hex	Unit: Default: 01 hex Attribute:						
Size: 1 byte (U8)	Access: RO PDO map: Not possible						
Subindex 1: No_01 30 Light projection power (CA0)							
Range: 0000 to FFFF hex	Unit: -	t: Default: hex			Attribute: A		
Size: 2 bytes (U16)		Access: RW PDO map: Not possible					

- Set the Power Tuning Level of the unit number specified by the index.
- Adjust the maximum incident light level of R, G, B during execution of smart tuning to the power tuning level.

4071 + (N-1) × 80 No_01 30 Direction	No_01 30 Direction*						
Subindex 0: Number of Entries							
Range: 01 hex	Unit: Default: 01 hex Attribute:						
Size: 1 byte (U8)		Access: RO		PDO map: Not possible			
Subindex 1: No_01 30 Direction							
Range: 0000 to FFFF hex	Unit:		Default: hex		Attribute: A		
Size: 2 bytes (U16)		Access: RW		PDO map: N	lot possible		

- This object sets the direction of the Sensor with the unit number that is specified by the index.
- * Items with asterisks are supported from E3NW-ECT version 1.03.

 You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)

Data	Setting
0000 hex	Normal
0001 hex	Reversed

4072 + (N-1) × 80 No_01 30 Outp	110_01 00 Output mode Delection / Cam of the ming						
Subindex 0: Number of Entries							
Range: 01 hex	Unit:	Init: Default: 01 hex Attribute:					
Size: 1 byte (U8)		Access: RO			lot possible		
Subindex 1: No_01 30 Output Mode Selection							
Range: 0000 to FFFF hex	Unit:	Init: Default: hex Attribute: A					
Size: 2 bytes (U16)	ze: 2 bytes (U16) Access: RW PDO map: Not possible						

- This object sets the output mode selection of the Sensor with the unit number that is specified by the index.
- *1 Items with asterisks are supported from E3NW-ECT version 1.03.
- *2 is supported from E3NW-ECT Ver 1.08

You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)

	Set	tting
Data	Output Mode Selection	Gain switching
	TA0	VD□0
0000 hex	Normal	Gain x4000
0001 hex	Hybrid	Gain x2000
0002 hex	Not used.	Gain x800
0003 hex	Not used.	Gain x200
0004 hex	Not used.	Gain x80
0005 hex	Not used.	Gain x20
0006 hex	Not used.	Gain x4
0007 hex	Not used.	Gain x1
0008 to -FFFF hex	Not used.	Not used.

4075 + (N-1) × 80 No_01 30 Preset*							
Subindex 0: Number of Entries							
Range: 01 hex	Unit: Default: 01 hex Attribute:						
Size: 1 byte (U8)		Access: RO		PDO map: Not possible			
Subindex 1: No_01 30 Preset							
Range: 0000 to FFFF hex	Unit:	Default: hex Attribute: A			Attribute: A		
Size: 2 bytes (U16)		Access: RW		PDO map: N	Not possible		

- This object sets the preset of the Sensor with the unit number that is specified by the index.
- * Items with asterisks are supported from E3NW-ECT version 1.03.

You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)

Data	Setting
0000 hex	Cleared
0001 hex	Executed

- · Bit 0 to 31 set values:
 - There is a different set value for each object. Set the values to write.
- · Bit 32 to 61set values:

These bits are used to specify the unit numbers of the Sensors to which to write object data. Turn ON the bits that correspond to the target unit numbers.

To write to all Sensors from unit numbers 1 to 30, you can turn OFF all bits 32 to 61.

• Bit 62 and 63 set values:

0 (not used)

Set data: 63, 62, 61... 32, 31 ... 0 [bit]

Not Unit Data
used: 0 number to write
selections

Example:

Case 1 This example sets the Threshold 1 Input 1 object for unit numbers 1, 10, and 30 to 1000 decimal.

- \Rightarrow Write the following data for an index of 0x4F04 and subindex of 0x01: 0x20000201000003E8.
- Case 2 This example sets the display mode for all unit numbers from 1 to 30 to blinking.
 - \Rightarrow Write the following data for an index of 0x4F17 and a subIndex of 0x01: 0x0000000000000001 or 0x3FFFFFF00000001.

^{*1} The setting range and default settings are the same as the values for the objects that are used from unit numbers 1 to 30.

^{*2} This is the same as the name of the objects that are used from unit numbers 1 to 30.

6000 hex	Read Input 8 Bits	Read Input 8 Bits							
Subindex 0:									
Range: 08 hex	ge: 08 hex Unit: Default: 08 hex Attribute:					Attribute:			
Size: 1 byte (U8))		Access: RO		PDO map: Not possible				
Subindex 1 to 8: Read Input 01hex to 40 hex									
Range: 00 hex to	o FF hex	Unit: -	Default: hex			Attribute:			
Size: 1 byte (U8))		Access: RO		PDO map: F	Possible			

- Sensor inputs are assigned to subindices 1 to 8.
- The order of the assignments is given below.
 - Bits 1 of Read Input 01 hex to 08 hex: Sensor output 1 from sensor Unit No. 1
 - Bits 2 of Read Input 01 hex to 08 hex: Sensor output 2 from sensor Unit No. 1
 - Bits 3 of Read Input 01 hex to 08 hex: Sensor output 1 from sensor Unit No. 2

- - -

- Bits 1 of Read Input 39 hex to 40 hex: Sensor output 1 from sensor Unit No. 29
- Bits 2 of Read Input 39 hex to 40 hex: Sensor output 2 from sensor Unit No. 29
- Bits 3 of Read Input 39 hex to 40 hex: Sensor output 1 from sensor Unit No. 30
- Bits 4 of Read Input 39 hex to 40 hex: Sensor output 2 from sensor Unit No. 30
- Bits 5 of Read Input 39 hex to 40 hex: Cannot be used.
- Bits 6 of Read Input 39 hex to 40 hex: Cannot be used.
- Bits 7 of Read Input 39 hex to 40 hex: Cannot be used.
- Bits 8 of Read Input 39 hex to 40 hex: Cannot be used.
- On the E3NX-FA10/40, E2NC-EA10/40, E9NC-AA10/40, E9NC-VA10/40, and E9NC-VD20/50, the bit is fixed at "0" for both sensor outputs 1 and 2.

6100 hex	Read Input 16 Bits	Read Input 16 Bits						
Subindex 0:								
Range: 04 hex	Range: 04 hex Unit: Default: 04 hex Attribute:					Attribute:		
Size: 1 byte (U8	3)		Access: RO		PDO map: Not possible			
Subindex 1 to 4	: 1st word to 4th word of	Read I	nputs		•			
Range: 0000 he	x to FFFF hex	Unit: -	Default: hex			Attribute:		
Size: 2 bytes (U	16)	Access: RO			PDO map: F	Possible		

- Sensor inputs are assigned to subindices 1 to 4.
- The order of the assignments is given below.
 - Bit 1 of the 1st word of Read Input: Sensor output 1 from sensor Unit No. 1
 - Bit 2 of the 1st word of Read Input: Sensor output 2 from sensor Unit No. 1
 - Bit 3 of the 1st word of Read Input: Sensor output 1 from sensor Unit No. 2

- - -

- Bit 9 of the 4th word of Read Input: Sensor output 1 from sensor Unit No. 29
- Bit 10 of the 4th word of Read Input: Sensor output 2 from sensor Unit No. 29
- Bit 11 of the 4th word of Read Input: Sensor output 1 from sensor Unit No. 30
- Bit 12 of the 4th word of Read Input: Sensor output 2 from sensor Unit No. 30
- Bit 13 of the 4th word of Read Input: Cannot be used.
- Bit 14 of the 4th word of Read Input: Cannot be used.
- Bit 15 of the 4th word of Read Input: Cannot be used.
- Bit 16 of the 4th word of Read Input: Cannot be used.
- On the E3NX-FA10/40, E2NC-EA10/40, E9NC-AA10/40, E9NC-VA10/40, and E9NC-VD20/50, the bit is fixed at "0" for both sensor outputs 1 and 2.

Using Distributed Sensor Units A-2

Models of Sensor Amplifiers That Can Be Connected to A-2-1 **Distributed Sensor Units**

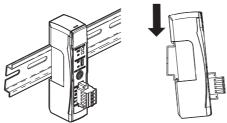
This section lists the models of Sensor Amplifiers that you can connect to the E3NW-DS.

Name	Model	Features
Smart Fiber Amplifiers	E3NX-FA□0	These standard fiber amplifiers are easy to use and set up.
Smart Laser Amplifier Unit	E3NC-LA0	These laser sensors use a minute spot and yet they provide stable detection.
Smart Laser Amplifier Unit (CMOS Type)	E3NC-SA0	These laser sensors use a CMOS device that allows reliable detection of stepped surfaces.
Contact-type Smart Sensors	E9NC-TA0	These contact-type sensors are durable.
Color fiber amplifier	E3NX-CA0	Fiber amplifier with color sensing for stable detection
Smart Fiber Amplifiers	E3NX-MA0	Fiber Amplifier with Light Emission/Reception
Smart Fiber Amplifiers	E3NX-FAH0	Fiber Amplifier with Near Infrared Light Emission/Reception
Smart Amplifier Separation Proximity Unit	E2NC-EA□0	Proximity Sensor Amplifier
Smart Analog Input Unit	E9NC-AA□0	Current (4 to 20 mA) Input Amplifier
Smart Analog Input Unit	E9NC-VA□0	Voltage (1 to 5 V) Input Amplifier
Smart Analog Input Unit	E9NC-VD□0	Voltage Differential Input (-2 to 2V), Input Type

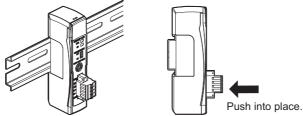
The E9NC-TA0 is supported from E3NW-ECT Ver 1.03. The E3NX-CA0 is supported from E3NW-ECT Ver 1.06. The E3NX-MA0, E2NC-EA□0, E9NC-AA□0/VD□0 are supported from E3NW-ECT Ver 1.08 of the E3NW-ECT.

You can check the version with object index 100A hex. (Refer to "A-1-4 Communication Objects" on page A-4.)

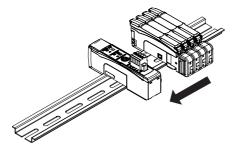
A-2-2 Mounting and Removing Distributed Sensor Units


This section describes how to mount and remove the E3NW-DS and individual Amplifiers to the DIN Track.

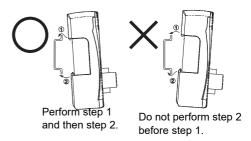
Refer to "7-3 Mounting Dimensions" on page 7-9 for dimensions of each Distributed Sensor Units.


Mounting Method

Use the following procedure to mount the Units.

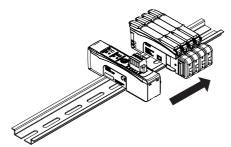

1 Hook the upper portion of the Unit on the DIN Track.

2 Press the lower portion of the Unit against the DIN Track.

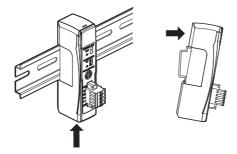

Remove the protective cap from the right side of the Distributed Sensor Unit. Then, slide the Sensor Amplifier Units against the Distributed Sensor Unit with the tabs aligned with the notches in the connector area. Press them together until they click into place.

4 Use the DIN Track End Plates (PFP-M) that are provided to remove any gaps between the Units and secure them in place. Replace the protective cap that you removed in step 3 to the Sensor Amplifier on the right end.

Do not perform steps 1 and 2 in the reverse order. This may reduce the mounting strength.



After you finish these steps, make sure the E3NW-DS is securely in place.


Removing Units

Use the following procedure to remove the Units.

Slide the Sensor Amplifier Units away and remove the Distributed Sensor Unit first.

Keep the Distributed Sensor Unit pressed against the DIN Track as you lift it up, and then

A-2-3 DS-Bus Network Wiring

This section describes how to install the DS-Bus network.

Installation Precautions

This section give basic precautions for installing a DS-Bus network.

Network Installation Precautions

- When installing the DS-Bus network, implement sufficient safety measures and install according to all applicable standards. (Refer to JIS X5252 or *Electric Installation Technical Standards*.)
 We recommend that you request installation from a specialist who is qualified in safety measures and standards.
- Do not install DS-Bus network devices near sources of noise.
 If installation in a noisy environment in unavoidable, implement suitable noise countermeasures, such as installing devices in metal cases.

Communications Cable Installation Precautions

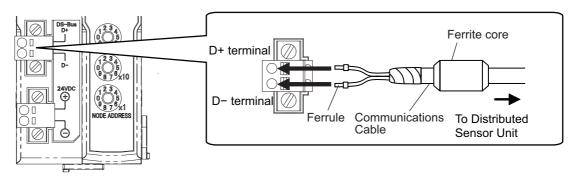
- · Check the communications cables that you use for the following:
 - · Make sure there are no broken wires.
 - · Make sure there are no short-circuits.
 - · Make sure that the connectors are connected properly.
- When you connect the communications connectors to the devices, press the connectors on the communications cables all the way in until they lock into place.
- · Route and wire the communications cables separately from high-voltage cables.
- Do not install communications cables near sources of noise.
- Do not install communications cables in an environment with high temperatures or high humidity.
- Do not use communications cables where there is excessive dirt or dust or where there is oil mist.
- The bending radius of the communications cables is restricted. Refer to the specifications of the communications cable that you will use for the minimum bending radius.
- You can connect a maximum of eight Distributed Sensor Units to the Sensor Communication Unit.
- Do not exceed a total length (L1 + L2 + ... + Ln) of 30 m for the DS-Bus cable.
- Turn ON the DS-Bus termination switch only on the last Distributed Sensor Unit on the DS-Bus network. Turn it OFF on all other Distributed Sensor Units.

Preparations for Installation

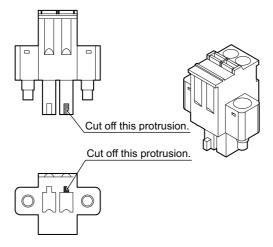
Prepare the following items.

Item	Remarks
DS-Bus communications cables	Use the recommended product given below.
DS-Bus communications connector	Included with the E3NW-series Sensor Communication
for Sensor Communication Unit	Unit.
DS-Bus communications connectors for Distributed Sensor Units	Included with the E3NW-DS Sensor Distributed Sensor Units.
Ferrite cores	Two are used. Included with the E3NW-DS Sensor Distributed Sensor Units.

Recommended Parts

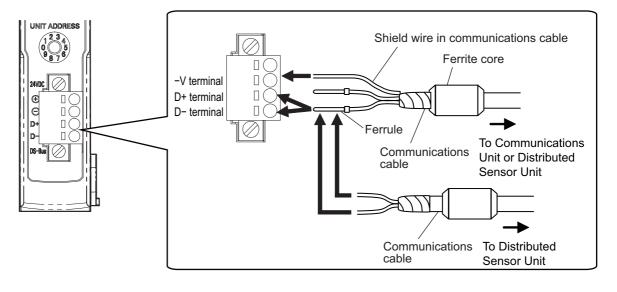

Part	Manufacturer	Model
Communications Cable	Bando Densen Co., Ltd.	ESVC 0.5X2C black

Connecting Communications Cables and Connectors


E3NW-series Sensor Communication Unit

Connect a communications cable to the DS-Bus communications connector on the Sensor Communication Unit.

Also, clamp on a ferrite core (enclosed) on the communications cable.


When you prepare a new DS-Bus connector, cut off the protrusion on one side of the connector as shown in the following figure. The enclosed connector already has this protrusion removed.

• E3NW-DS Sensor Distributed Sensor Units

Connect the D+ and D- lines and the shield wire in the communications cable to the power supply/communications connector on the Distributed Sensor Unit. Also, clamp on a ferrite core (enclosed) on the communications cable.

In connections between Distributed Sensor Units, connect the shield wire in the communications cable to the -V terminal on only one of the Distributed Sensor Units. Do not connect the shield wire to both Units.

A-2-4 Power **Supply Specifications** Connections and of the **Distributed Sensor Unit**

Precautions for Unit Power Supply

Observe the following precautions for the allowable current for cables and connectors, for voltage drop, and for power supply layout.

Precaution for Cable Voltage Drop

Make sure that the power supply to the Distributed Sensor Unit that is farthest from the power source is within the allowable fluctuation range.

Supplying Power from Multiple Power Sources

If you supply the Unit power from more than one power source, you can reduce the line current, the voltage drop, and the cable size.

This can also be used to help ensure system safety against power supply problems.

Power Supply Problems

You must determine the power supply layout and groupings according to whether the entire system is to be stopped or whether stopping the entire system is to be avoided when problems occur in the power supply.

To avoid stopping the entire system, we recommend that you supply power from more than one power source and supply power to separate groups of Distributed Sensor Units from each.

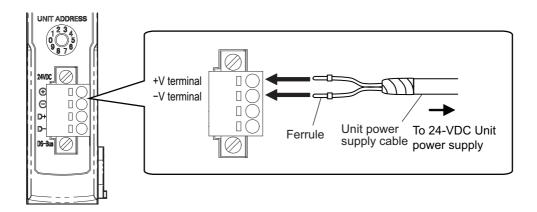
This will also reduce the voltage drop and allow you to use smaller cables.

Unit Power Supply Specifications

Use a standard power supply that meets the following specifications.

Item	Specification		
Output voltage	24 VDC 10%		
Output ripple	600 mVp-p		
Output current	The supply capacity of the power supply must be equal to or greater than the total current consumption of all slaves.		
Isolation	Between output and AC power supply and between output and frame ground		

We recommend using an OMRON S8JX Power Supply to supply Unit power.



Precautions for Correct Use

- To calculate the output current of the Unit power supply, the current consumption of the Unit power supply must include the total current consumption of the E3NW-DS and the current consumptions of the Sensor Amplifier Units that are used.
- Select a power supply that has sufficient capacity, allowing for the inrush current at system startup.

Unit Power Supply Connections

Connect a cable from the Unit power supply (24 VDC) to the power supply connector on each Distributed Sensor Unit to supply power separately to each Unit.

Attach ferrules to the Unit power supply cable wires and connect them securely so that they do not come loose.

Recommended Parts

We recommend the following ferrules for the Unit power supply cable.

Model number	Applicable wire size	Crimping tool	Manufacturer
AI0,5-10WH	0.5 mm2 (AWG20)	CRIMPFOX UD6 (product number 1204436) or CRIMPFOX ZA3 Series	Phoenix Contact
H0.5/16 orange	0.5 mm2 (AWG20)	PZ1.5 Crimper (product number 900599)	Weidmüller

We recommend the following screwdriver to remove ferrules.

Model number	Manufacturer
XW4Z-00C	OMRON Corporation

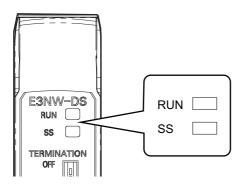
A-2-5 General Specifications of the Distributed Sensor Unit

Item	Specification	
Unit power supply voltage	24 VDC (20.4 to 26.4 VDC)	
Power and current	2 W max. (Not including power supplied to Sensors.), 80 mA max. (Not including	
consumption	current supplied to Sensors.)	
Noise immunity	Conforms to IEC 61000-4-4, 1 k (power line).	
Vibration resistance	10 to 60 Hz with an amplitude of 0.7 mm, 60 to 150 Hz, 50 m/s ² , 1.5 hours each in	
Vibration resistance	X, Y, and Z directions	
Shock resistance	150 m/s ² with amplitude of 0.7 mm	
Officer resistance	(3 times each in 6 directions on 3 axes)	
Dielectric strength	500 VAC, 50 and 60 Hz, 1 min	
Insulation resistance	20 M Ω or more (at 500 VDC)	

25% to 85% (with no condensation or icing)

A-2-6 Hardware Specifications of the Distributed Sensor Unit

35-mm DIN track mounting


Status Indicators

Storage humidity

0 to 40°C.

Installation method

The status indicators give the current status of the E3NW-DS.

RUN Indicator

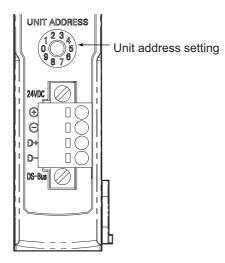
This indicator gives the operating status.

Color	Status	Meaning		
Green	Not lit.	Power OFF, or one of the following errors has occurred: Rotary switch setting error, watchdog timer timeout error, hardware error, RAM check error		
Green	Flashing rapidly	No access for three or more seconds from the Sensor Communication Unit.		
	Lit.	Normal status, or Sensor not connected error		

SS Indicator

This indicator gives the connection status of the Sensor, or whether there are any other errors.

Color	Status	Meaning
	Not lit.	Initial diagnosis in progress, or one of the following errors occurred after the power was cycled: Hardware error or Sensor not connected error
Green	Lit.	A mismatch error between the number of connected Sensors setting and the number of actually connected Sensors.
Red	Lit.	Number of connected Sensors comparison error, too many Sensors connected error, RAM check error, or rotary switch setting error

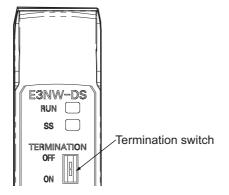

^{*} The temperature is limited by the number of Amplifiers that are connected.

For 1 to 2 Amplifiers: 0 to 55°C; 3 to 10 Amplifiers: 0 to 50°C; 11 to 16 Amplifiers: 0 to 45°C; 17 to 30 Amplifiers:

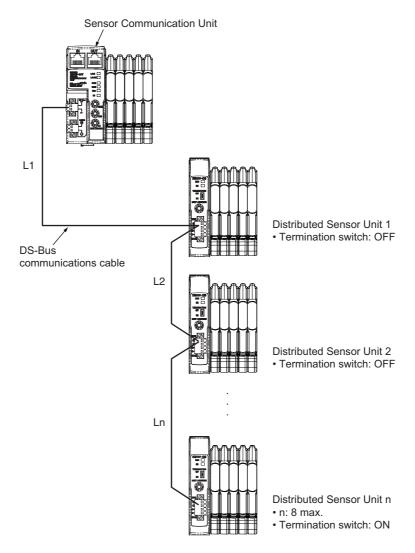
Unit Address Setting Switch

This switch sets the node address that the E3NW-DS will use on the DS-Bus network between Units. The setting range is from 1 to 8. (Default setting: 1)

If you are going to connect more than one Distributed Sensor Unit to the Sensor Communication Unit, set the node address for each Distributed Sensor Unit to consecutive numbers starting from 1.



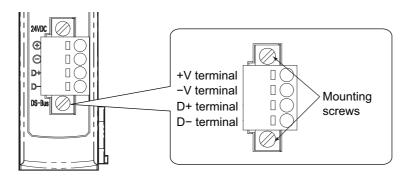
Precautions for Correct Use


- The unit address switch setting is read only once when the power supply is turned ON. Any
 change that is made after the power supply is turned ON will not take effect until the power
 supply is turned ON again.
- The Distributed Sensor Units will not operate properly if the same unit address is set more than once.

DS-Bus Network Termination Switch

This switch turns ON and OFF the communications terminating resistance on the Inter-Unit DS-Bus network. Turn ON the switch on the Distributed Sensor Unit at the end of the network and turn OFF the switch on the other Distributed Sensor Units.

As shown in the following diagram, turn ON the DS-Bus termination switch only on the last Distributed Sensor Unit on the DS-Bus network. Turn it OFF on all other Distributed Sensor Units.



Precautions for Correct Use

- You can connect a maximum of eight Distributed Sensor Units to the Sensor Communication Unit.
- Do not exceed a total length (L1 + L2 + ... + Ln) of 30 m for the DS-Bus cable.

Communications and Power Supply Connectors

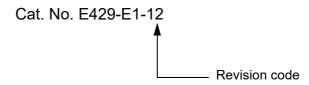
Connect the power supply cable from the Unit power supply and the DS-Bus communications cable to this connector.

Name	Specification
+V	24 VDC
-V	0 VDC
D+	Communications data signal +
D-	Communications data signal -

- Connector type: Spring-cage connector with mounting screws (4 positions)
- Applicable ferrule diameters: 0.25 to 0.5 mm² (AWG24 to AWG20) (for ferrules with insulating sleeves)

Refer to "Unit Power Supply Connections" on page A-59 for the recommended ferrules.

B-1 Terminology


Use the following list of EtherCAT terms for reference.

Term	Abbrevia- tion	Description
AL status (application layer status)	_	Status for indicating information on errors that occur in an application
		on a slave.
CAN application protocol over EtherCAT	CoE	A CAN application protocol service implemented on EtherCAT.
CAN in Automation	CiA	CiA is the international users' and manufacturers' group that
		develops and supports higher-layer protocols.
daviaa profila		Collection of device dependent information and functionality
device profile	_	providing consistency between similar devices of the same device type.
		Clock distribution mechanism used to synchronize EtherCAT Sensor
distributed clocks	DC	Communication Units and the EtherCAT Master Units.
EtherCAT slave controller	ESC	A controller for EtherCAT slave communication.
	501	An XML file that contains setting information for an EtherCAT Slave
EtherCAT slave information	ESI	Unit.
EtherCAT state machine	ESM	An EtherCAT communication state machine.
		The ETG is a global organization in which OEM, End Users and
EtherCAT Technology Group	ETG	Technology Providers join forces to support and promote the further
		technology development.
index	_	Address of an object within an application process.
network configuration information	_	The EtherCAT network configuration information held by the
		EtherCAT master.
object	_	Abstract representation of a particular component within a device, which consists of data, parameters, and methods.
		Data structure addressed by Index and Sub-index that contains
object dictionary	OD	description of data type objects, communication objects and
object dictionary	OB .	application objects.
		A state in EtherCAT communications where SDO communications
operational	_	and I/O are possible.
PDO communications	-	An acronym for process data communications.
pre-operational	_	A state in EtherCAT communications where only SDO
pre-operational		communications are possible without being able to perform I/O.
Process data	_	Collection of application objects designated to be downloaded
		cyclically or acyclically for the purpose of measurement and control.
		One type of EtherCAT communications that uses process data
process data communications	_	objects (PDOs) to exchange information in realtime with a fixed cycle. This is also called PDO communications.
		Structure described by mapping parameters containing one or
Process data object	PDO	several process data entities.
Receive PDO	RxPDO	A process data object received by an EtherCAT Slave Unit.
		A state in EtherCAT communications where only SDO
safe operational	_	communications and reading input data from slaves are possible.
		Outputs from slaves are not performed.
SDO communications		One type of EtherCAT communications that uses service data
- CO COMMUNICATION		objects (SDOs) for communicating information when required.
service data object	SDO	CoE asynchronous mailbox communications where all objects in the
		object dictionary can be read and written.
Slave Information Interface	SII	Slave information that is stored in non-volatile memory in the slave.
subindex	-	Sub-address of an object within the object dictionary.

Term	Abbrevia- tion	Description
sync manager	SM	Collection of control elements to coordinate access to concurrently used objects.
Transmit PDO	TxPDO	A process data object sent from an EtherCAT Slave Unit.

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

The following table outlines the changes made to the manual during each revision. Page numbers refer to the previous version.

Revision code	Date	Revised content		
01	March 2013	Original production.		
02	July 2014	Added registered trademark symbol to "EtherCAT."		
		Pages 5 to 7: Updated Read and Understand the Manual information.		
		Pages 2-2, 2-3, 7-3, 7-10, A-21 to A-27, A-29, A-31 to A-34, and A-36 to A-40: Added/updated information for E9NC-TA0.		
03	April 2015	Removed the logo from the connector diagram.		
		Corrected mistakes.		
04 July 2015 Page 11: Added applicable		Page 11: Added applicable standards.		
		Corrected mistakes.		
05	May 2016	Added the E3NX-CA0.		
06	July 2016	Corrected mistakes.		
07 December 2017 E3NX-FA function added.		E3NX-FA function added.		
		E3NX-MA, FAH/E2NC-EA/E9NC-AA, VA added.		
		Corrected mistakes.		
08	May 2018	Added the E9NC-VD.		
		Corrected mistakes.		
09	February 2019	E3NX-FA and E3NX-MA function added.		
10	March 2020	E9NC-TA function added. Corrected mistakes.		
11	June 2021	Added annotations to communication commands.		
		Corrected mistakes.		
12	November 2022 E2NC-EA□0 function added. Corrected mistakes.			
		Add description in Safety Precautions.		

