
This addendum is to be used in conjunction with the

OS32C User’s Manual (P/N 99863-0010 or Manual No. Z296-E1)

OS32C-DM Safety Laser Scanner with EtherNet/IP

 P/N 99863-0060 Rev.G
 Cat. No. Z336-E1-07

Introduction

Original Detailed Instructions

Trademarks
• Windows, Windows XP, Windows 7, Windows 8.1 and Windows 10 are either registered trademarks or trademarks of Microsoft

Corporation in the USA and other countries.
• ODVA, EtherNet/IPTM, DeviceNetTM, ControlNetTM, CIPTM and CIP SafetyTM are trademarks of ODVA, Inc.
• Other company names and product names in this document are the trademarks or registered trademarks of their respective companies.
• Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

Thank you for purchasing the OS32C Safety Laser Scanner (herein after referred to as the "OS32C").
This is the instruction Manual describing how to connect the OS32C-xxx-DM to devices in EtherNet/IP systems and confirm the
connection.
This addendum is to be used in conjunction with the Safety Laser Scanner OS32C Series User’s Manual (Z296-E1) (herein after
referred to as the "OS32C User’s Manual".)
Always take into account the following points when using the OS32C:

Make sure OS32C is handled by a "Responsible Person" who is well aware of and familiar with the machine to be installed.
The term "Responsible Person" used in this Instruction Manual means the person qualified, authorized and responsible to secure
"safety" in each process of the design, installation, operation, maintenance services and disposition of the machine.
It is assumed that the OS32C will be used properly according to the installation environment, performance and function of the machine.
A responsible Person should conduct a risk assessment of the machine and determine the suitability of this product before installation.
Read this Manual thoroughly and understand its contents.

ii

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Warranties.
(a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and

workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing

by Omron). Omron disclaims all other warranties, express or implied.

(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-

INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS.

BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET

THE REQUIREMENTS OF THEIR INTENDED USE.

Limitation on Liability; Etc.
OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE

PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.

Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is

asserted.

Suitability of Use.
Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the

combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide

applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This

information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the

end product, machine, system, or other application or use. Buyer shall be solely responsible for determining

appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take

application responsibility in all cases.

NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN

LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS

THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED

USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products.
Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence

thereof.

Performance Data.
Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in

determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the

Terms and Conditions Agreement

Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the

Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obligation hereunder shall be, at

Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or

replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an

amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible

for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms

that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse

or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment.

Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in

combination with any electrical or electronic components, circuits, system assemblies or any other materials or

substances or environments. Any advice, recommendations or information given orally or in writing, are not to be

construed as an amendment or addition to the above warranty.

iii
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

E

user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and

Limitations of Liability.

Change in Specifications.
Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our

practice to change part numbers when published ratings or features are changed, or when significant construction

changes are made. However, some specifications of the Product may be changed without any notice. When in doubt,

special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your

Omron's representative at any time to confirm actual specifications of purchased Product.

PATENTS
Elements of the electronics and optics essential to meet the specifications and performance standards of Omron controls

are covered by one or more of the following U.S. Patents Numbers: 6,665,621; 6,753,776; 6,493,653; 6,587,811;

7,965,384. Additional patents pending.

Errors and Omissions.
Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility

is assumed for clerical, typographical or proofreading errors or omissions.

iv

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

The Alert symbols and their meanings ensure safe use of the products
In order to use the OS32C safely, the precautions listed in this manual are indicated by alert symbols. The

descriptions must be followed. Failure to follow all precautions and alerts may result in an unsafe installation

or operation.

The following indications and symbols are used.

Meanings of Alert Symbols

Alert Statements in this Manual

System and zone status parameters monitored over EtherNet/IP are to be used for diagnostic
purposes only, and must not be used in safety-critical functions.

Measurement data monitored over EtherNet/IP are to be used for diagnostic purposes only, and
must not be used in safety-critical functions.

Ensure the measurement report configuration matches the expected measurement data format.

Safety Precautions

Indicates a potentially hazardous situation which, if not avoided, will result in minor or moderate injury, or
may result in serious injury or death. Additionally, there may be significant property damage.

Indicates a potentially hazardous situation which, if not avoided, will result in minor or moderate injury, or
there may be property damage.

Indicates prohibited actions.

Indicates mandatory actions.

iii
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Contens

E

Contents

1. Introduction .. 1

2. Range Data Accuracy .. 2

3. Laser Scanner Setup ... 3

4. EtherNet/IP Input Assembly Data .. 4

4.1 Table 1: EtherNet/IP Data Types ... 5

4.2 Table 2: Input Assembly 100 and Vendor Object 112 (32bytes), System Status 5

4.3 Table 3: Input Assembly 101 (296 bytes), System & Detection Status.. 7

4.4 Table 4: Output Assembly 113 and Vendor Object 115 (104 bytes),
Measurement Report Configuration for Input Assembly 102 & 103 .. 9

4.5 Table 5: Output Assembly 114 (108 bytes), Measurement Report Configuration
for Input Assembly 104 & 105.. 11

4.6 Table 6 : Output Assembly 115 (316 bytes), Measurement Report Configuration
for Input Assembly 106 through 111.. 13

4.7 Table 7 : Output Assembly 112, 116-120 I/O Connection Triggers ... 16

4.8 Table 8: Common Measurement Report Header Format (56 bytes) ... 18

4.9 Table 9: Input Assembly 102 and Vendor Specific Object 114 (max. 1410 bytes) 20

4.10 Table 10: Input Assembly 103 and Vendor Specific Object 116 (max. 1410 bytes) 20

4.11 Table 11: Vendor Specific Object 117 (max. 2764 bytes).. 20

4.12 Table 12: Input Assembly 104 (max. 960 bytes).. 21

4.13 Table 13: Input Assembly 105 (max. 960 bytes).. 21

4.14 Table 14: Input Assembly 106 (max. 554 bytes).. 21

4.15 Table 15: Input Assembly 107 (max. 554 bytes).. 21

4.16 Table 16: Input Assembly 108 (max. 454 bytes).. 22

4.17 Table 17: Input Assembly 109 (max. 454 bytes).. 22

4.18 Table 18: Input Assembly 110 (max. 358 bytes).. 22

4.19 Table 19: Input Assembly 111 (max. 358 bytes).. 22

4.20 Data Refresh Rate (Expected Packet Rate) .. 22

4.21 Active Warning Zone Set Selection ... 23

5. Installing the OS32C EDS file .. 24

6. Establishing a connection with Omron CJ2.. 25

6.1 Setting up the EtherNet/IP Network ... 25

6.2 Setting up EtherNet/IP Tags for the CJ2.. 25

6.3 Downloading EtherNet/IP Configuration to the CJ2... 30

7. Establishing a connection with Omron NJ.. 32

7.1 NJ5 MAC EtherNet/IP Adapter Setup .. 32

7.2 Setting up tags in the NJ Controller ... 32

7.3 Setting Tags into Global Variable Section ... 34

7.4 Exporting Tags to Network Configurator.. 35

7.5 Configuring the EtherNet/IP Network... 35

7.6 Downloading EtherNet/IP Configuration to the NJ... 37

8. Setup for multiple OS32Cs or multiple PLCs ... 40

8.1 One PLC Polling Multiple OS32Cs .. 40

8.2 Multiple PLCs Polling One OS32C .. 43

9. Establishing communications with a computer based device .. 46

9.1 EtherNet/IP Command Protocol... 46

iv

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Contents

9.1.1 Table 10: EtherNet/IP Datagram Header - Command Format.. 46

9.2 EtherNet/IP Command List .. 46

9.2.1 Table 11: EtherNet/IP Command List ... 46

9.2.2 Table 12: EtherNet/IP Status Error Code List ... 47

9.3 EtherNet/IP Command Specific Data... 47
9.3.1 Table 13: EtherNet/IP Common Packet Format (CPF)... 47

9.4 EtherNet/IP Commands ... 48
9.4.1 List Identity Command .. 48

9.4.2 Table 14: List Identity Command Request.. 48

9.4.3 Table 15: List Identity Command Reply .. 48

9.4.4 Table 16: EtherNet/IP Identity Object Parameters.. 49

9.4.5 Register Scanner Session Command... 49

9.4.6 Table 17: Register Session Command Request... 49

9.4.7 Table 18: Register Session Command Reply ... 49

9.4.8 Un-Register Scanner Session Command ... 50

9.4.9 Table 19: Un-Register Session Command Request ... 51

9.4.10 SendRRData Command ... 51

9.4.11 Table 20: SendRRData Command Request... 51

9.4.12 Table 21: Get Single Attribute Service Code Request CPF Data ... 51

9.4.13 Table 22: SendRRData Command Reply to a Get Single Attribute Request 52

9.4.14 Table 23: Set Single Attribute Service Code Request CPF Data ... 52

9.4.15 Table 24: SendRRData Command Reply to a Set Single Attribute Request.............................. 53

9.4.16 Table 25: Large Forward Open Request Encapsulation Packet... 54

9.4.17 Table 26: SendRRData Command Reply to a Large Forward Open Request 55

9.4.18 Table 27: UDP I/O connection packet... 56

9.4.19 Table 28: Forward Close Request Encapsulation Packet... 57

9.4.20 Table 29: SendRRData Command Reply to a Forward Close Request 58

10. Application Examples... 59

10.1 Runtime Monitoring using Explicit TCP/IP Request/Reply Messages ... 59
10.1.1 Network Configuration .. 59

10.1.2 Computer/PLC Configuration & Process Control Example... 59

10.2 Runtime Monitoring using an Implicit UDP I/O Connection ... 67
10.2.1 Network Configuration .. 67

10.2.2 Computer/PLC Configuration & Process Control Example... 67

11. Revision History ... 72

1
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Introduction

E

1. Introduction
The OS32C-xxx-DM Safety Laser Scanner with EtherNet/IP and Measurement Data allows the laser scanner

to be monitored by products that adhere to the ODVA guidelines for EtherNet/IP communications. The OS32C

with EtherNet/IP functions as an EtherNet/IP target (slave) device to the products that function as EtherNet/IP

originator (master) devices. Multiple EtherNet/IP master devices can be set up to monitor a single OS32C and

a single EtherNet/IP master can be set up to monitor multiple OS32Cs.

The OS32C-xxx-DM Safety Laser Scanner provides an EtherNet/IP communication interface for monitoring

system status and range measurement data. EtherNet/IP is a communication system suitable for use in

industrial environments. EtherNet/IP allows industrial devices to exchange time-critical application

information. These devices include simple I/O devices such as sensors/actuators, as well as complex control

devices such as robots, programmable logic controllers, welders, and process controllers. EtherNet/IP uses

CIP (Common Industrial Protocol), the common network, transport and application layers also shared by

ControlNet and DeviceNet. EtherNet/IP then makes use of standard Ethernet and TCP/IP technology to

transport CIP communications packets. The result is a common, open application layer on top of open and

highly popular Ethernet and TCP/IP protocols. EtherNet/IP provides a producer/consumer model for the

exchange of time-critical control data. The producer/consumer model allows the exchange of application

information between a sending device (e.g., the producer) and many receiving devices (e.g., the consumers)

without the need to send the data multiple times to multiple destinations. For EtherNet/IP, this is accomplished

by making use of the CIP network and transport layers along with IP Multicast technology. Many EtherNet/IP

devices can receive the same produced piece of application information from a single producing device.

EtherNet/IP makes use of standard IEEE 802.3 technology; there are no non-standard additions that attempt

to improve determinism. Rather, EtherNet/IP recommends the use of commercial switch technology, with 100

Mbps bandwidth and full-duplex operation, to provide for more deterministic performance.

The OS32C with EtherNet/IP uses standard EtherNet/IP communications and does not use CIP Safety

protocols. Therefore, communication data from this device must not be used for functional safety. EtherNet/IP

communications with this laser scanner are for non-safety monitoring and changing non-safety warning

zone(s) purposes only. EtherNet/IP originator products are able to monitor the OS32C's detection zone state,

input & output status, configuration checksum values, and more. Full details of the OS32C's produced data

assembly can be found in this document, along with detailed instructions for establishing communications

between commonly used PLCs and the OS32C. General information for setting up communication

connections between the OS32C and a computer based device is also provided in this document.

A data measurement demo tool for the PC is available on the Omron website at Thisdemo tool is a C++

application that allows a user to view information such as system status, zone status,range

measurement, and more from the OS32C without the need for a PLC. Also available on the websiteare

data application function blocks for PLC programs. Users can use or modify these function blocks for their

own PLC programs. One such function block is a "configuration" function block which allows users to choose

the amount of data they would like to receive from the OS32C by specifying parameters such as the number

of beams and number of scans. "Object detection" function blocks are also available to help users process

the data they receive from the scanner.

2

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Range Data Accuracy

2. Range Data Accuracy

*1. Reflector Height should be between 300mm to 1000mm depending on application and range.

*2. To apply A toward a maximum expected error, use the formula n*A+B, where n corresponds to the desired

multiplier for s (1, 2, 3 etc.), and B is the maximum systematic error of 30mm. If there are reflectors in the

background of the target, refer to Table 7-2 in the OS32C user manual. Other error factors could arise

depending on other measurement conditions such as objects in close proximity to the beam path.

*3. Maximum range can vary depending on desired measurement accuracy, and can also be affected by

environmental conditions (e.g. smoke), window and/or target cleanliness.

For non-safety applications a value of 1 sigma can be used to determine the range accuracy of the OS32C-

DM, so the following calculation can be used in this case.

Range accuracy = (n * A) + B; where n = 1σ (sigma), A = random error and B = systematic error.

For example, at a range of 1000 mm with a reflectivity of 50%, the following range accuracy can be expected:

Using these attribute values and the value from the table, A = 10 mm and B is 30 mm, the range accuracy at

1000 mm with 50% reflectivity = (10 mm) + 30 mm = +- 40 mm.

 Estimated 1δ random error in mm (A) for given target reflectivity *2

Range
(mm)

Recommended Minimum
Reflector Width (mm)*1

1.8% 5% 10% 25% 50% 75% 100%
Retro

(330/sr)

250 70 20 10 10 10 10 10 10 10

500 70 20 10 10 10 10 10 10 10

1000 70 20 10 10 10 10 10 10 10

2000 70 20 20 10 10 10 10 10 10

3000 70 20 20 10 10 10 10 10 10

4000 70 20 20 20 20 20 20 20 20

5000 80 30 20 20 20 20 20 20 20

7500 120 40 20 20 20 20 20 20

10000 150 40 20 20 20 20 20

20000 300 40 20 20 20 20

30000 450 30 30 30 30

40000 600 Outside recommended range*3 30 30 30

50000 750 40 40

3
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Laser Scanner Setup

E

3. Laser Scanner Setup
Aside from changing the IP address settings of the OS32C, no configuration changes are required to establish

communications between the OS32C and an EtherNet/IP master device.

To change the OS32C configuration, including the IP address settings, refer to Chapter 3 of the OS32C Safety

Laser Scanner manual.

For OS32C wiring diagrams, refer to Chapter 5 of the OS32C Safety Laser Scanner manual.

4

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

EtherNet/IP Input Assembly Data

4. EtherNet/IP Input Assembly Data
The OS32C has twelve standard input assembly objects and four vendor specific objects as described below:

• Input Assembly Object 100 (32 bytes) and Vendor Specific Object 112 provide system status data.

• Input Assembly Object 101 (296 bytes) provides both system status and zone status data.

• Input Assembly Object 102 (up to 1410 bytes) and Vendor Specific Object 114 provide both system

status and range measurement data.

• Input Assembly Object 103 (up to 1410 bytes) and Vendor Specific Object 116 provide both system

status and reflectivity measurement data.

• Input Assembly Object 104 (up to 960 bytes) provides both system status and range measurement

data.

• Input Assembly Object 105 (up to 960 bytes) provides both system status and reflectivity

measurement data.

• Input Assembly Object 106 (up to 554 bytes) provides range measurement data.

• Input Assembly Object 107 (up to 554 bytes) provides reflectivity measurement data.

• Input Assembly Object 108 (up to 454 bytes) provides range measurement data.

• Input Assembly Object 109 (up to 454 bytes) provides reflectivity measurement data.

• Input Assembly Object 110 (up to 358 bytes) provides range measurement data.

• Input Assembly Object 111 (up to 358 bytes) provides reflectivity measurement data.

• Vendor Specific Object 117 (up to 2764 bytes) provides system status, range and reflectivity

measurement data.

Note: The term "Input Assembly" is from the originating devices perspective. PLCs and PC client software

applications are considered the originating devices from the OS32C's perspective.

The input assembly object data provided by the OS32C can be obtained by using either explicit TCP/IP

request/reply messages or by using implicit UDP I/O connections in order to receive the assembly data at a

specific repetitive interval. Vendor specific object data provided by the OS32C can be obtained by using

explicit TCP/IP request/reply messages at a rate defined by the software application. Data provided in

vendor specific objects 114, 116 and 117 are synchronous with the scan period of the OS32C (40 ms) and

can be used in applications requiring greater time precision. In firmware release 3.18 (3 dot 18) or later UDP/

IO messages are also synchronous with a multiple of the scan period (40, 80, 120 etc).

To read individual data attributes from the scanner, service code 14 (0x0E, Get Single Attribute) in a TCP

request/response explicit message can be used to obtain the data.

For example, sending the following parameters to the scanner will provide an unsigned 16-bit machine state

value:

Service code 14 (0x0E) // Get Single Attribute

Object class 112 (0x70) // Vendor Specific Object Number, System Status

Instance 1 (0x01) // Vendor Specific Instance

Attribute 4 (0x04), see additional attributes listed in the tables specified below.

To read the entire input assembly object data, service code 14 (0x0E, Get Single Attribute) can be used in a

TCP request/reply explicit message using the following parameters.

Service code 14 (0x0E) // Get Single Attribute

5
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

EtherNet/IP Input Assembly Data

E

Object class 4 (0x04) // Assembly Object Class

Instance 100 (0x64) // Input Assembly Object Number, System Status

Attribute 03 (0x03) // Input Assembly Object Data

To read the entire vendor specific object data, service code 14 (0x0E, Get Single Attribute) can be used in a

TCP request/reply explicit message using the following parameters.

Service code 14 (0x0E) // Get Single Attribute

Object class 114 (0x72) // Vendor Specific Object Number (Range Data)

Instance 1 (0x01) // Vendor Specific Instance

Attribute 03 (0x03) // Vendor Specific Object Data

4.1 Table 1: EtherNet/IP Data Types

Input Assembly 100 listed in Table 2 below provides run-time system status information that can be

used to monitor the behavior and the current configuration of the scanner. Using an implicit UDP I/O

connection the scanner can be monitored at a repetition rate defined for the application.

4.2 Table 2: Input Assembly 100 and Vendor Object 112 (32bytes),

System Status

Keyword Description Minimum Maximum

SINT,
INT8 Short Integer -128 127

USINT,
UINT8 Unsigned Short Integer 0 255

INT,
INT16 Integer -32768 32767

UINT,
UINT16 Unsigned Integer 0 65535

DINT,
INT32 Double Integer -2147483647 (-231) 2147483646 (231 - 1)

UDINT,
UINT32 Unsigned Double Integer 0 4294967295 (232)

BYTE Bit string 8-bits 0 0xFF

WORD Bit string 16-bits 0 0xFFFF

DWORD Bit string 32-bits 0 0xFFFFFFFF

WORD #

(16-bit)
Description

Vendor Specific
Object 0x70,

Instance 0x01
Attribute Number

Enumeration / Possible Values

0

Machine State

Data Type: UINT
16-bit

4

POST = 0 // Power-on-self-test
STOP = 1 // Machine Stop, Protection Zone Violation
INTERLOCK = 2 // Start Interlock
RUN = 3 // Machine Run
STANDBY = 4 // System Standby.
CONFIGURE = 6 // Configuration process in session.
FAULT = 7 // System Faulted, OSSD's are OFF.

6

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

EtherNet/IP Input Assembly Data

NOTE: Words 11-15 are unused.

1

Machine Stop
Reasons

Data Type: UINT
16-bit

5

DIRTY_WINDOW = 0 // Dirty window cause system to stop.
ZONE_SELECT_NUM_ACTIVE = 1 // Invalid zone inputs, with wrong number
of active inputs.
ZONE_SELECT_INVALID = 2 // Invalid zone inputs, with correct number
of active inputs.
QUALIFIED_ZONE_VIOLATION = 3 // Qualified protection zone violation.
STAND_BY_REQUEST = 4 // Stand-by requested.
RX_ERROR = 5 // Receiver error
TOO_CLEAN_WINDOW = 6 // Too clean window caused system to stop.
NOT IN MACHINE STOP_1 = 7 // System currently not in stop mode
SYSTEM FAULTED = 8 // The system faulted, check display code
NOT IN MACHINE STOP_2 = 9 // System currently not in stop mode.

2

Active Protection
Zone Set

Data Type: UINT
16-bit

6

AZS_01 = 0 (0x00)
…
AZS_70 = 69 (0x45)
INVALID AZS = 32,768 (0x8000)

3

Zone Inputs

Data Type: WORD
16-bit

7

Zinput 1 = bit 0
Zinput 2 = bit 1
Zinput 3 = bit 2
Zinput 4 = bit 3
Zinput 5 = bit 4
Zinput 6 = bit 5
Zinput 7 = bit 6
Zinput 8 = bit 7

4

Detection Zone
Status

Data Type: WORD
16-bit

8

Protection Zone = bit 0
Warning Zone #1 = bit 1
Warning Zone #2 = bit 2
Window Contamination = bit 3

5
Output Status

Data Type: WORD
16-bit

9
OSSD Output = bit 0
Auxiliary Output = bit 1
Warning Output = bit 2

6
Input Status

Data Type: WORD
16-bit

10 (0x0A)
Standby Input = bit 0
Start Input = bit 1
EDM Input = bit 2

7

Seven Segment
Display

Data Type: UINT
16-bit

11 (0x0B)

Digit Low followed by Digit High
Each Digit Displays 1 to 9 (0x01 to 0x09) for normal operation. 0x1B and 0x1B
for dashes "--" during machine stop operation.

8

Non-Safety
Configuration

 Checksum Value

Data Type: UINT
16-bit

12 (0x0C)

16-bit Non-Safety Configuration CRC Value

9

Safety
Configuration

Checksum Value

Data Type: UINT
16-bit

13 (0x0D)

16-bit Safety Configuration CRC Value

10

Active Warning
Zone Set

Data Type :
UINT 16-bit

14 (0x0E),

AZS_01 = 0 (0x00)
…
AZS_70 = 69 (0x45)
INVALID AZS = 32,768 (0x8000)

WORD #

(16-bit)
Description

Vendor Specific
Object 0x70,

Instance 0x01
Attribute Number

Enumeration / Possible Values

7
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction
EtherNet/IP Input Assembly Data

E

Input Assembly 101 listed in Table 3 below provides run-time system status plus, protection zone,
warning zone 1 and warning zone 2, detection status information. This information can be used to
monitor the behavior of the scanner as well as the detection zones of the scanner. Using an implicit
UDP I/O connection the scanner can be monitored at a repetition rate defined for the application.

4.3 Table 3: Input Assembly 101 (296 bytes), System & Detection Status
WORD #
(16-bit) Attribute Description Data Field (16-bit)

0 Machine State

POST = 0 // Power-on-self-test
STOP = 1 // Machine Stop, Protection Zone Violation
INTERLOCK = 2 // Start Interlock
RUN = 3 // Machine Run
STANDBY = 4 // System Standby.
CONFIGURE = 6 // Configuration process in session.
FAULT = 7 // System Faulted, OSSD's are OFF.

1 Machine Stop Reasons

DIRTY_WINDOW = 0 // Dirty window cause system to stop.
ZONE_SELECT_NUM_ACTIVE = 1 // Invalid zone inputs, with wrong number of
active inputs.
ZONE_SELECT_INVALID = 2 // Invalid zone inputs, with correct number of
active inputs.
QUALIFIED_ZONE_VIOLATION = 3 // Qualified protection zone violation.
STAND_BY_REQUEST = 4 // Stand-by requested.
RX_ERROR = 5 // Receiver error
TOO_CLEAN_WINDOW = 6 // Too clean window caused system to stop.
NOT IN MACHINE STOP_1 = 7 // System currently not in stop mode
SYSTEM FAULTED = 8 // The system faulted, check display code
NOT IN MACHINE STOP_2 = 9 // System currently not in stop mode

2 Active Protection Zone Set

AZS_01 = 0 (0x00)
...
AZS_70 = 69 (0x45)
INVALID AZS = 32,768 (0x8000)

3 Zone Inputs

Zinput 1 = bit 0
Zinput 2 = bit 1
Zinput 3 = bit 2
Zinput 4 = bit 3
Zinput 5 = bit 4
Zinput 6 = bit 5
Zinput 7 = bit 6
Zinput 8 = bit 7

4 Detection Zone Status

Protection Zone = bit 0
Warning Zone #1 = bit 1
Warning Zone #2 = bit 2
Window Contamination = bit 3

5 Output Status
OSSD Output = bit 0
Auxiliary Output = bit 1
Warning Output = bit 2

6 Input Status
Standby Input = bit 0
Start Input = bit 1
EDM Input = bit 2

7 Seven Segment Display
Digit Low followed by Digit High
Each Digit Displays 1 to 9 (0x01 to 0x09) for normal operation. 0x1B and 0x1B for
dashes "--" during machine stop operation.

8
Non-Safety Configuration

 Checksum Value
16-bit Non-Safety Configuration CRC Value

9
Safety Configuration

Checksum Value
16-bit Safety Configuration CRC Value

8

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

EtherNet/IP Input Assembly Data

10
Active Warning Zone Set
Data Type: UINT 16-bit

AZS_01 = 0 (0x00)
…
AZS_70 = 69 (0x45)
INVALID AZS = 32,768 (0x8000)

11 Unused For future use.

12 Unused For future use.

13 Unused For future use.

14 Unused For future use.

15 Unused For future use.

16
Protection Zone Status

Beams #1 (Beams 1-16)
Beam status bit0 to bit16 (0 = Clear , 1 = Blocked)

17
Protection Zone Status

Beams #2 (Beams 17-32)
Beam status bit0 to bit16 (0 = Clear , 1 = Blocked)

18 through 57

Protection Zone Status
Beams #3 (Beam 33-48)

Through
Protection Zone Status

Beams #42 (Beams 653-672)

Beam status bit0 to bit16 (0 = Clear , 1 = Blocked)

58
Protection Zone Status

Beams #43 (Beams 673-688)

Beam status bit0 to bi16 (0 = Clear , 1 = Blocked)
Beam 678-688 unused.
Unused beams set to zero.
Note: Data used to maintain 16-bit word alignment.

59
Unused Zone Status Beams

#44 (Beams 689-704)
Unused beams set to zero.
Note: Data used to maintain 32-bit alignment..

60
Warning Zone #1 Status
Beams #1 (Beams 1-16)

Beam status bit0 to bit16 (0 = Clear , 1 = Blocked)

61
Warning Zone #1 Status

Beams #2 (Beams17-32)
Beam status bit0 to bit16 (0 = Clear , 1 = Blocked)

62-101

Warning Zone #1 Status
Beams #3 (Beam 33-48)

Through
Warning Zone #1 Status

Beams #42 (Beams 653-672)

Beam status bit0 to bit16 (0 = Clear , 1 = Blocked)

102
Warning Zone #1 Status

Beams #43 (Beams 672-688)

Beam status bit0 to bi16 (0 = Clear , 1 = Blocked)
Beam 678-688 unused.
Unused beams set to zero.
Note: Data used to maintain 16-bit word alignment.

103
Warning Zone #1 Status

Beams #44 (Beams 689-704)
Unused beams set to zero.
Note: Data used to maintain 32-bit alignment.

104
Warning Zone #2 Status
Beams #1 (Beams 1-16)

Beam status bit0 to bit16 (0 = Clear , 1 = Blocked)

105
Warning Zone #2 Status

Beams #2 (Beams17-32)
Beam status bit0 to bit16 (0 = Clear , 1 = Blocked)

106-145

Warning Zone #2 Status
Beams #3 (Beam 33-48)

Through
Warning Zone #2 Status

Beams #42 (Beams 653-672)

Beam status bit0 to bit16 (0 = Clear , 1 = Blocked)

146
Warning Zone #2 Status

Beams #43 (Beams 672-688)

Beam status bit0 to bi16 (0 = Clear , 1 = Blocked)
Beam 678-688 unused.
Unused beams set to zero.
Note: Data used to maintain 16-bit word alignment.

147
Warning Zone #2 Status

Beams #44 (Beams 689-704)

Unused beams set to zero.
Note: Data used to maintain 32-bit alignment.

WORD #

(16-bit)
Attribute Description Data Field (16-bit)

9
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

EtherNet/IP Input Assembly Data

E

Output Assembly Object 113 and Vendor Specific Object 115 listed in Table 4 below are used to

configure the run-time measurement data that the scanner provides in input assembly objects 102 and

103 as well as vendor specific objects 114, 116 and 117. In output assembly 113 and vendor specific

115 objects the measurement report range and reflectivity formats as well as the individual beams to

be monitored can be selected using a beam report selection mask array.

4.4 Table 4: Output Assembly 113 and Vendor Object 115 (104 bytes),

Measurement Report Configuration for Input Assembly 102 & 103

WORD #

(16-bit)
Description

Vendor Specific
Object x, Instance

y, Attribute
Number z

Enumeration / Possible Values

0

Range Report
Format

Data Type: UINT
16-bit

0x73, 1, 4

NO_TOF_MEASUREMENTS = 0,
// No time-of-flight measurements required.

RANGE_MEASURE_50M = 1, // default setting.
// Bit 0 to 15 (16-bit) distance measurement value (0 to 50,000 millimeters).
// Value of 0x0001 = Noisy Beam, Value of 0xFFFF = No Reflection.

RANGE_MEASURE_32M_PZ = 2,
// Bit 0 to 14 (15-bit) distance measurement value (0 to 32,766 millimeters).
// Value of 0x0001 = Noisy Beam, Value of 0x7FFF = No Reflection.
// Bit 15: object detected (beam blocked) within protection zone.

RANGE_MEASURE_16M_WZ1PZ = 3,
// Bit 0 to 13 (14-bit) distance measurement value (0 to 16,382 millimeters).
// Value of 0x0001 = Noisy Beam, Value of 0x3FFF = No Reflection.
// Bit 14: object detected (beam blocked) within the warning zone 1.
// Bit 15: object detected (beam blocked) within protection zone.

RANGE_MEASURE_8M_WZ2WZ1PZ = 4,
// Bit 0 to 12 (13-bit) distance measurement value (0 to 8,190 millimeters).
// Value of 0x0001 = Noisy Beam, Value of 0x1FFF = No Reflection.
// Bit 13: object detected (beam blocked) within the warning zone 2.
// Bit 14: object detected (beam blocked) within the warning zone 1.
// Bit 15: object detected (beam blocked) within protection zone.

RANGE_MEASURE_TOF_4PS = 5
// Bit 0 to 15 (16-bit) TOF measurement value (0 to 65,534 x 4ps).
// Value of 0x0001 = Noisy Beam, Value of 0xFFFF = No Reflection.

RANGE_MEASURE_50M_W3BIT_ENCODED_TOT = 6,
// Bit 0 to 12 (13-bit) distance measurement value
// (0 to 50,000 millimeters, 50 meters with 8mm resolution).
// Bit 13 to 15 (3 bits) encoded reflectivity value (1/128 of measured value).

RANGE_MEASURE_32M_WZ2 = 7,
// Bit 0 to 14 (15-bit) distance measurement value (0 to 32,766 millimeters).
// Bit 15: measure value detected (beam blocked) within the warning zone 2.

RANGE_MEASURE_16M_WZ1WZ2 = 8,
// Bit 0 to 13 (14-bit) distance measurement value (0 to 16,382 millimeters).
// Bit 14: measure value detected (beam blocked) within the warning zone 1.
 // Bit 15: measure value detected (beam blocked) within the warning zone 2.

RANGE_MEASURE_8M_PZWZ1WZ2 = 9,
// Bit 0 to 12 (13-bit) distance measurement value (0 to 8,190 millimeters).
// Bit 13: measure value detected (beam blocked) within protection zone.
// Bit 14: measure value detected (beam blocked) within the warning zone 1.
// Bit 15: measure value detected (beam blocked) within the warning zone 2.

10

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

EtherNet/IP Input Assembly Data

1

Reflectivity Report
Format

Data Type: UINT
16-bit

0x73, 1, 5

NO_TOT_MEASUREMENTS = 0,
// No time-over-threshold measurements required.

REFLECTIVITY_MEASURE_TOT_ENCODED = 1, // default setting.
// Bit 0 to 9 (10-bit) TOT scaled value (0 to 1,000)
// Bit 10: unused.
// Bit 11: object detected (beam blocked) within the warning zone 2.
// Bit 12: object detected (beam blocked) within the warning zone 1.
// Bit 13: object detected (beam blocked) within protection zone.
// Bit 14: noisy beam detected.
// Bit 15: no reflection detected.

REFLECTIVITY_MEASURE_TOT_4PS = 2
// Bit 0 to 15 (16-bit) TOT measurement value (0 to 65,535 x 4ps).

2

Range Report
Mode

Data Type: UINT
16-bit

0x73,1,6

REPORT_RANGE_ONLY = 0 (default),
 // Assembly 102 Report Range Only.

REPORT_RANGE_AND_REFLECTIVITY = 1,
// Assembly 102 Report Range & Reflectivity.

3

Active Warning
Zone Set Number
Data Type: UINT

16-bit

0x73,1,7

Minimum Value: ZONE_1 = 0,
…
Maximum Value: ZONE_70 = 69.

4 Unused. For future use.

5 Unused. For future use.

6 Unused. For future use.

7 Unused. For future use.

8 - 51

Beam Report
Selection Mask

Data Type: UINT
16-bit ARRAY[44]

0x73, 1, 12 (0x0C)

Beam Report Selection Mask is used to define the reported beam
measurements in Assembly Input Objects 102, 103 & Vendor Specific Objects
114, 116 and 117.
Bit = 0, excluded from measurement report. // default setting.
Bit = 1, included in measurement reports.

WORD #

(16-bit)
Description

Vendor Specific
Object x, Instance

y, Attribute
Number z

Enumeration / Possible Values

11
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

EtherNet/IP Input Assembly Data

E

4.5 Table 5: Output Assembly 114 (108 bytes), Measurement Report

Configuration for Input Assembly 104 & 105

Word #

(16-bit)
Description Enumeration / Possible Values

0
Range Report Format

Data Type: UINT
16-bit

NO_TOF_MEASUREMENTS = 0,
// No time-of-flight measurements required.

RANGE_MEASURE_50M = 1, // default setting.
// Bit 0 to 15 (16-bit) distance measurement value (0 to 50,000 millimeters).
// Value of 0x0001 = Noisy Beam, Value of 0xFFFF = No Reflection.

RANGE_MEASURE_32M_PZ = 2,
// Bit 0 to 14 (15-bit) distance measurement value (0 to 32,766 millimeters).
// Value of 0x0001 = Noisy Beam, Value of 0x7FFF = No Reflection.
// Bit 15: object detected (beam blocked) within protection zone.

RANGE_MEASURE_16M_WZ1PZ = 3,
// Bit 0 to 13 (14-bit) distance measurement value (0 to 16,382 millimeters).
// Value of 0x0001 = Noisy Beam, Value of 0x3FFF = No Reflection.
// Bit 14: object detected (beam blocked) within the warning zone 1.
// Bit 15: object detected (beam blocked) within protection zone.

RANGE_MEASURE_8M_WZ2WZ1PZ = 4,
// Bit 0 to 12 (13-bit) distance measurement value (0 to 8,190 millimeters).
// Value of 0x0001 = Noisy Beam, Value of 0x1FFF = No Reflection.
// Bit 13: object detected (beam blocked) within the warning zone 2.
// Bit 14: object detected (beam blocked) within the warning zone 1.
// Bit 15: object detected (beam blocked) within protection zone.

RANGE_MEASURE_TOF_4PS = 5
// Bit 0 to 15 (16-bit) TOF measurement value (0 to 65,534 x 4ps).
// Value of 0x0001 = Noisy Beam, Value of 0xFFFF = No Reflection.

RANGE_MEASURE_50M_W3BIT_ENCODED_TOT = 6,
// Bit 0 to 12 (13-bit) distance measurement value
// (0 to 50,000 millimeters, 50 meters with 8mm resolution).
// Bit 13 to 15 (3 bits) encoded reflectivity value (1/128 of measured value).

RANGE_MEASURE_32M_WZ2 = 7,
// Bit 0 to 14 (15-bit) distance measurement value (0 to 32,766 millimeters).
// Bit 15: measure value detected (beam blocked) within the warning zone 2.

RANGE_MEASURE_16M_WZ1WZ2 = 8,
// Bit 0 to 13 (14-bit) distance measurement value (0 to 16,382 millimeters).
// Bit 14: measure value detected (beam blocked) within the warning zone 1.
 // Bit 15: measure value detected (beam blocked) within the warning zone 2.

RANGE_MEASURE_8M_PZWZ1WZ2 = 9,
// Bit 0 to 12 (13-bit) distance measurement value (0 to 8,190 millimeters).
// Bit 13: measure value detected (beam blocked) within protection zone.
// Bit 14: measure value detected (beam blocked) within the warning zone 1.
// Bit 15: measure value detected (beam blocked) within the warning zone 2.

12

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

EtherNet/IP Input Assembly Data

1

Reflectivity Report
Format

Data Type: UINT
16-bit

NO_TOT_MEASUREMENTS = 0,
// No time-over-threshold measurements required.

REFLECTIVITY_MEASURE_TOT_ENCODED = 1, // default setting.
// Bit 0 to 9 (10-bit) TOT scaled value (0 to 1,000)
// Bit 10: unused.
// Bit 11: object detected (beam blocked) within the warning zone 2.
// Bit 12: object detected (beam blocked) within the warning zone 1.
// Bit 13: object detected (beam blocked) within protection zone.
// Bit 14: noisy beam detected.
// Bit 15: no reflection detected.

REFLECTIVITY_MEASURE_TOT_4PS = 2
// Bit 0 to 15 (16-bit) TOT measurement value (0 to 65,535 x 4ps).

2

Range
Report Mode

Data Type: UINT
16-bit

REPORT_RANGE_ONLY = 0,
// Report Range Only.

REPORT_RANGE_AND_REFLECTIVITY = 1,
// Report Range & Reflectivity.

3

Assembly 104 & 105
Enable User Tags
Data Type: UINT

16-bit

Enable User Provided Tag Values for First & Last Positions of Input Assembly Data.
// Disable = 0 (default), Enable = 1

4

Assembly 104
User First Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for First Position of Input Assembly Data.

5

Assembly 104
User Last Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for Last Position of Input Assembly Data.

6

Assembly 105
User First Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for First Position of Input Assembly Data.

7

Assembly 105
User Last Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for Last Position of Input Assembly Data.

8
Active Warning Zone

Set Number
Data Type: UINT 16-bit

Minimum Value: ZONE_1 = 0,

Maximum Value: ZONE_70 = 69.

9 Unused. For future use.

10- 53

Beam Report Selection
Mask

Data Type: UINT
16-bit ARRAY[44]

Beam Report Selection Mask is used to define the reported beam measurements in Assembly
Input Objects 104, 105.
Bit = 0, excluded from measurement report.
Bit = 1, included in measurement reports. // default setting.

Word #

(16-bit)
Description Enumeration / Possible Values

13
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

EtherNet/IP Input Assembly Data

E

4.6 Table 6 : Output Assembly 115 (316 bytes), Measurement Report

Configuration for Input Assembly 106 through 111

Word #

(16-bit)
Description Enumeration / Possible Values

0
Range Report Format

Data Type: UINT
16-bit

NO_TOF_MEASUREMENTS = 0,
// No time-of-flight measurements required.

RANGE_MEASURE_50M = 1, // default setting.
// Bit 0 to 15 (16-bit) distance measurement value (0 to 50,000 millimeters).
// Value of 0x0001 = Noisy Beam, Value of 0xFFFF = No Reflection.

RANGE_MEASURE_32M_PZ = 2,
// Bit 0 to 14 (15-bit) distance measurement value (0 to 32,766 millimeters).
// Value of 0x0001 = Noisy Beam, Value of 0x7FFF = No Reflection.
// Bit 15: object detected (beam blocked) within protection zone.

RANGE_MEASURE_16M_WZ1PZ = 3,
// Bit 0 to 13 (14-bit) distance measurement value (0 to 16,382 millimeters).
// Value of 0x0001 = Noisy Beam, Value of 0x3FFF = No Reflection.
// Bit 14: object detected (beam blocked) within the warning zone 1.
// Bit 15: object detected (beam blocked) within protection zone.

RANGE_MEASURE_8M_WZ2WZ1PZ = 4,
// Bit 0 to 12 (13-bit) distance measurement value (0 to 8,190 millimeters).
// Value of 0x0001 = Noisy Beam, Value of 0x1FFF = No Reflection.
// Bit 13: object detected (beam blocked) within the warning zone 2.
// Bit 14: object detected (beam blocked) within the warning zone 1.
// Bit 15: object detected (beam blocked) within protection zone.

RANGE_MEASURE_TOF_4PS = 5
// Bit 0 to 15 (16-bit) TOF measurement value (0 to 65,534 x 4ps).
// Value of 0x0001 = Noisy Beam, Value of 0xFFFF = No Reflection.

RANGE_MEASURE_50M_W3BIT_ENCODED_TOT = 6,
// Bit 0 to 12 (13-bit) distance measurement value
// (0 to 50,000 millimeters, 50 meters with 8mm resolution).
// Bit 13 to 15 (3 bits) encoded reflectivity value (1/128 of measured value).

RANGE_MEASURE_32M_WZ2 = 7,
// Bit 0 to 14 (15-bit) distance measurement value (0 to 32,766 millimeters).
// Bit 15: measure value detected (beam blocked) within the warning zone 2.

RANGE_MEASURE_16M_WZ1WZ2 = 8,
// Bit 0 to 13 (14-bit) distance measurement value (0 to 16,382 millimeters).
// Bit 14: measure value detected (beam blocked) within the warning zone 1.
 // Bit 15: measure value detected (beam blocked) within the warning zone 2.

RANGE_MEASURE_8M_PZWZ1WZ2 = 9,
// Bit 0 to 12 (13-bit) distance measurement value (0 to 8,190 millimeters).
// Bit 13: measure value detected (beam blocked) within protection zone.
// Bit 14: measure value detected (beam blocked) within the warning zone 1.
// Bit 15: measure value detected (beam blocked) within the warning zone 2.

14

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

EtherNet/IP Input Assembly Data

1

Reflectivity Report
Format

Data Type: UINT
16-bit

NO_TOT_MEASUREMENTS = 0,
// No time-over-threshold measurements required.

REFLECTIVITY_MEASURE_TOT_ENCODED = 1, // default setting.
// Bit 0 to 9 (10-bit) TOT scaled value (0 to 1,000)
// Bit 10: unused.
// Bit 11: object detected (beam blocked) within the warning zone 2.
// Bit 12: object detected (beam blocked) within the warning zone 1.
// Bit 13: object detected (beam blocked) within protection zone.
// Bit 14: noisy beam detected.
// Bit 15: no reflection detected.

REFLECTIVITY_MEASURE_TOT_4PS = 2
// Bit 0 to 15 (16-bit) TOT measurement value (0 to 65,535 x 4ps).

2

Assembly 106 Range
Report Mode

Data Type: UINT
16-bit

REPORT_RANGE_ONLY = 0,
// Report Range Only.

REPORT_RANGE_AND_REFLECTIVITY = 1,
// Report Range & Reflectivity.

3

Assembly 106 & 107
Enable User Tags
Data Type: UINT

16-bit

Enable User Provided Tag Values for First & Last Positions of Input Assembly Data.
// Disable = 0 (default), Enable = 1

4

Assembly 106
User First Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for First Position of Input Assembly Data.

5

Assembly 106
User Last Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for Last Position of Input Assembly Data.

6

Assembly 107
User First Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for First Position of Input Assembly Data.

7

Assembly 107
User Last Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for Last Position of Input Assembly Data.

8
Active Warning Zone

Set Number
Data Type: UINT 16-bit

Minimum Value: ZONE_1 = 0,

Maximum Value: ZONE_70 = 69.

9 Unused. For future use.

10- 53

Beam Report Selection
Mask

Data Type: UINT
16-bit ARRAY[44]

Beam Report Selection Mask is used to define the reported beam measurements in Assembly
Input Objects 106, 107.
Bit = 0, excluded from measurement report.
Bit = 1, included in measurement reports. // default setting.

54

Assembly 108 Range
Report Mode

Data Type: UINT
16-bit

REPORT_RANGE_ONLY = 0,
// Report Range Only.

REPORT_RANGE_AND_REFLECTIVITY = 1,
// Report Range & Reflectivity.

55

Assembly 108 & 109
Enable User Tags
Data Type: UINT

16-bit

Enable User Provided Tag Values for First & Last Positions of Input Assembly Data.
// Disable = 0 (default), Enable = 1

Word #

(16-bit)
Description Enumeration / Possible Values

15
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

EtherNet/IP Input Assembly Data

E
The range report formats available in the configuration output assembly 113, 114 and 115 provide

options to receive range measurements in millimeters units, encoded detection zone bits and

56

Assembly 108
User First Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for First Position of Input Assembly Data.

57

Assembly 108
User Last Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for Last Position of Input Assembly Data.

58

Assembly 109
User First Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for First Position of Input Assembly Data.

59

Assembly 109
User Last Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for Last Position of Input Assembly Data.

60 Unused For future use.

61 Unused For future use.

62-105

Beam Report Selection
Mask

Data Type: UINT
16-bit ARRAY[44]

Beam Report Selection Mask is used to define the reported beam measurements in Assembly
Input Objects 108, 109.
Bit = 0, excluded from measurement report.
Bit = 1, included in measurement reports. // default setting.

106

Assembly 110 Range
Report Mode

Data Type: UINT
16-bit

REPORT_RANGE_ONLY = 0,
// Report Range Only.

REPORT_RANGE_AND_REFLECTIVITY = 1,
// Report Range & Reflectivity.

107

Assembly 110 & 111
Enable User Tags
Data Type: UINT

16-bit

Enable User Provided Tag Values for First & Last Positions of Input Assembly Data.
// Disable = 0 (default), Enable = 1

108

Assembly 110
User First Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for First Position of Input Assembly Data.

109

Assembly 110
User Last Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for Last Position of Input Assembly Data.

110

Assembly 111
User First Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for First Position of Input Assembly Data.

111

Assembly 111
User Last Position Tag

Data Type: UINT
16-bit

User Provided Tag Value for Last Position of Input Assembly Data.

112 Unused For future use.

113 Unused For future use.

114-157

Beam Report Selection
Mask

Data Type: UINT
16-bit ARRAY[44]

Beam Report Selection Mask is used to define the reported beam measurements in Assembly
Input Objects 110, 111.
Bit = 0, excluded from measurement report.
Bit = 1, included in measurement reports. // default setting.

Word #

(16-bit)
Description Enumeration / Possible Values

16

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

EtherNet/IP Input Assembly Data

millimeter units, or time-of-flight measurements in picoseconds. The encoded detection zone bits that

are provided by the scanner serve two purposes, 1) to provide fast detection of the location where

zone violations occur, and 2) so that the client application (PLC or PC) is not required to maintain the

same detection zone parameters that are already stored in the scanner. When encoded range

measurements are provided the measurement values can be separated from the detection zone bits

by using a binary mask for the selected format. When a measurement beam is noisy and does not

contain valid information the value returned is 1 (0x0001) and when there is no measurement of the

value the maximum value for the range report format is returned (i.e. for the RANGE_MEASURE_50M

format the returned value is 65535 (0xFFFF)). The range measurements are provided in input

assembly object 102, 104, 106, 108 and 110 as well as vendor specific object 114 and 117 which also

contains reflectivity measurements.

The reflectivity report formats available in the configuration output assembly 113, 114 and 115 provides

another option to receive reflectivity measurements in a scaled unit with encoded detection zone bits,

or time-over-threshold measurements in picoseconds. The encoded detection bits that are embedded

in the reflectivity measurements serve the same purpose as described above but provide an alternate

method for zone detection when long range measurements are required. The reflectivity

measurements are provided in input assembly object 103, 105, 107,109, and 111 as well as vendor

specific objects 116 and 117 which also contains range measurements.

Output Assembly 112 and 116 through 120 are single word assemblies which are used to keep a PLC

I/O connection alive for streaming any of the standard Input assemblies (100 through 111). The output

data of this assembly has no effect on the measurement report configuration and can be used to

trigger an alternate I/O connection. When the measurement report configuration, Output Assembly

113, is used to collect range measurement data for example, Output Assemblies 112, 116 through 120

can be used to create an alternate streaming connection in order to collect reflectivity data.

4.7 Table 7 : Output Assembly 112, 116-120 I/O Connection Triggers

The OS32C uses a beam report selection mask to select the areas of interest. When defining the

required resolution and selected zones of interest, the beam report selection mask provides the

greatest flexibility for changing monitored zones during run-time. Figure 4-1 below shows the coverage

area when all beams are selected and each bit in the beam report selection mask is set to 1. Two

additional beams before and after the sensing field are provided to ensure the full safety region is

protected at all times. Therefore the true monitoring region coverage is from -0.4° to 270.4°.

Word #

(16-bit)
Description Enumeration / Possible Values

0
Data Type: UINT

16-bit
Not used.

17
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

EtherNet/IP Input Assembly Data

E

Fig. 4-1 Beam Report Selection Mask, All Beams

Using the OS32C beam report selection mask smaller areas of interest can also be defined. For

example setting the selection bits 225 thru 450 in the beam report selection mask provides an area of

coverage from 90 to 180 degrees in the scan plane.

Fig. 4-2 Beam Report Selection Mask, Beam 225 through 450

As shown in Figure 4-3 below, the beam report selection mask can also be used to reduce the amount

of data provided in the area of interest. For example setting every 5th beam in the selection bits 225

through 450 in the selection mask provides an area of coverage with a resolution of 2 degrees.

Fig. 4-3 Beam Report Selection Mask, Beam 225 through 450 with Low Resolution

-0 .4° to 270 .4°

B eam 0 th ru 676
0.4° per beam

135º

0º 270º

135º

0º 270º

90° to 180°,
B eam 225 th ru 450

0.4° per beam

135º

0º 270º
90° to 180°,

B eam 225 th ru 450
2.0° per beam

18

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

EtherNet/IP Input Assembly Data

Input assembly objects 102 through 105 as well as vendor specific objects 114, 116 and 117 provide a

common measurement report header format in addition to the specific measurement data provided in

these assembly structures. Table 8 below shows the common measurement report header format.

Using explicit TCP/IP request/reply messages or an implicit UDP I/O connection for assembly objects

102 through 105 the scanner can be monitored at a repetition rate defined for the application.

4.8 Table 8: Common Measurement Report Header Format (56 bytes)

 Word #

(16-bit)
Description

Vendor Specific
Object x, Instance

y, Attribute
Number z

Enumeration / Possible Values

0 & 1
Scan Count

Data Type: UDINT
32-bit

0x72, 1, 13 (0x0D)
0 to 4294967295 (232)

2 & 3
Scan Rate

Data Type: UDINT
32-bit

0x72, 1, 14 (0x0E)
39,000 us ± 500 us

4 & 5
Scan Time Stamp
Data Type: UDINT

32-bit
0x72, 1, 15 (0x0F)

0 to 4294967295 (232) us

6 & 7
Scan Beam Period
Data Type: UDINT

32-bit
0x72, 1, 16 (0x10)

42,777 to 43,888 ns

8

Machine State

Data Type: UINT
16-bit

0x70, 1, 4

POST = 0 // Power-on-self-test
STOP = 1 // Machine Stop, Protection Zone Violation
INTERLOCK = 2 // Start Interlock
RUN = 3 // Machine Run
STANDBY = 4 // System Standby.
CONFIGURE = 6 // Configuration process in session.
FAULT = 7 // System Faulted, OSSD's are OFF.

9

Machine Stop
Reasons

Data Type: UINT
16-bit

0x70, 1, 5

DIRTY_WINDOW = 0 // Dirty window cause system to stop.
ZONE_SELECT_NUM_ACTIVE = 1 // Invalid zone inputs, with wrong number
of active inputs.
ZONE_SELECT_INVALID = 2 // Invalid zone inputs, with correct
number of active inputs.
QUALIFIED_ZONE_VIOLATION = 3 // Qualified protection zone violation.
STAND_BY_REQUEST = 4 // Stand-by requested.
RX_ERROR = 5 // Receiver error
TOO_CLEAN_WINDOW = 6 // Too clean window caused system to
stop.
NOT IN MACHINE STOP_1 = 7 // System currently not in stop mode
SYSTEM FAULTED = 8 // The system faulted, check display
code
NOT IN MACHINE STOP_2 = 9 // System currently not in stop mode

10

Active Protection
Zone Set

Data Type: UINT
16-bit

0x70, 1, 6

AZS_01 = 0 (0x00)
...
AZS_70 = 69 (0x45)
INVALID AZS = 32,768 (0x8000)

11

Zone Inputs

Data Type: WORD
16-bit

0x70, 1, 7

Zinput 1 = bit 0
Zinput 2 = bit 1
Zinput 3 = bit 2
Zinput 4 = bit 3
Zinput 5 = bit 4
Zinput 6 = bit 5
Zinput 7 = bit 6
Zinput 8 = bit 7

19
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

EtherNet/IP Input Assembly Data

E

12

Detection Zone
Status

Data Type: WORD
16-bit

0x70, 1, 8

Protection Zone = bit 0
Warning Zone #1 = bit 1
Warning Zone #2 = bit 2
Window Contamination = bit 3

13

Output Status

Data Type: WORD
16-bit

0x70, 1, 9

OSSD Output = bit 0
Auxiliary Output = bit 1
Warning Output = bit 2

14

Input Status

Data Type: WORD
16-bit

0x70, 1, 10 (0x0A)

StandBy Input = bit 0
Start Input = bit 1
EDM Input = bit 2

15

Seven Segment
Display

Data Type: UINT
16-bit

0x70, 1, 11 (0x0B)

Digit Low followed by Digit High
Each Digit Displays 1 to 9 (0x01 to 0x09) for normal operation.
0x1B and 0x1B for dashes "--" during machine stop operation.

16

Non-Safety
Configuration

 Checksum Value

Data Type: UINT
16-bit

0x70, 1, 12 (0x0C)

16-bit Non-Safety Configuration CRC Value

17

Safety
Configuration

Checksum Value

Data Type: UINT
16-bit

0x70, 1, 13 (0x0D)

16-bit Safety Configuration CRC Value

18

Active Warning
Zone Set

Data Type : UINT
16-bit

0x70, 1, 14 (0x0E)

AZS_01 = 0 (0x00)
…
AZS_70 = 69 (0x45)
INVALID AZS = 32,768 (0x8000)

19 Unused For future use.

20 Unused For future use.

21 Unused For future use.

22 Unused For future use.

23 Unused For future use.

24

Range Report
Format

Data Type: UINT
16-bit

0x72, 1, 4

Report format of range data

25

Reflectivity Report
Format

Data Type: UINT
16-bit

0x72, 1, 5

Report format of reflectivity data

26

Range Report
Mode

Data Type : UINT
16-bit

0x72, 1, 6 (0x06)

REPORT_RANGE_ONLY = 0 (default),
// Assembly 102 Report Range Only.

REPORT_RANGE_AND_REFLECTIVITY = 1, // Assembly 102 Report Range &
Reflectivity.

27 Number of Beams 0x72, 1, 17 (0x11) Number of measurement beams in report.

 Word #

(16-bit)
Description

Vendor Specific
Object x, Instance

y, Attribute
Number z

Enumeration / Possible Values

20

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

EtherNet/IP Input Assembly Data

In addition to the common measurement report header defined in Table 8, Input Assembly 102 and

Vendor Specific Object 114 includes range measurement data for the selected area of interest. Using

explicit TCP/IP request/reply messages or an implicit UDP I/O connection the scanner can be

monitored at a repetition rate defined for the application.

4.9 Table 9: Input Assembly 102 and Vendor Specific Object 114 (max.

1410 bytes)

In addition to the common measurement report header defined in Table 8, Input Assembly 103

includes reflectivity measurement data for the selected area of interest. Using explicit TCP/IP request/

reply messages or an implicit UDP I/O connection the scanner can be monitored at a repetition rate

defined for the application.

4.10 Table 10: Input Assembly 103 and Vendor Specific Object 116 (max.

1410 bytes)

In addition to the common measurement report header defined in Table 8, Vendor Specific Object 117

includes both range and reflectivity measurement data for the selected area of interest. Since UDP I/O

messages are limited to less than 1500 bytes this assembly can only be provided using explicit TCP/IP

request/reply messages. The scanner will respond to each request immediately after the next scan

period.

4.11 Table 11: Vendor Specific Object 117 (max. 2764 bytes)

28 - 704
Range (TOF)

data[]
UINT 16-bit

Range measurement data, variable size.
Size selected using the beam report mask configuration. (1)
Array Size = Number of Beams included in measurement report header,
maximum size = 677.

28 - 704
Reflectivity (TOT)

data[]
UINT 16-bit

Reflectivity measurement data, variable size.
Size selected using the beam report mask configuration. (1)
Array Size = Number of Beams included in measurement report header,
maximum size = 677.

28 - 704
Range (TOF)

data[]
UINT 16-bit

Range measurement data, variable size.
Size selected using the beam report mask configuration. *1. *2.
Array Size = Number of Beams included in measurement report header,
maximum size = 677.

705-1381
Reflectivity (TOT)

data[]
UINT 16-bit

Reflectivity measurement data, variable size.
Size selected using the beam report mask configuration. *1. *2.
Array Size = Number of Beams included in measurement report header,
maximum size = 677.

Note *1. See section Table 4: Output Assembly 113 and Vendor Object 115 (104 bytes), Measurement Report Configuration for Input
Assembly 102 & 103 for beam selection mask usage.

*2. Vendor Specific Assembly reports are synchronous with the scan period of the scanner.

21
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

EtherNet/IP Input Assembly Data

E

In addition to the common measurement report header defined in Table 8, Input Assembly 104

includes range measurement data for the selected area of interest. Using explicit TCP/IP request/reply

messages or an implicit UDP I/O connection the scanner can be monitored at a repetition rate defined

for the application.

4.12 Table 12: Input Assembly 104 (max. 960 bytes)

In addition to the common measurement report header defined in Table 8, Input Assembly 105

includes reflectivity measurement data for the selected area of interest. Using explicit TCP/IP request/

reply messages or an implicit UDP I/O connection the scanner can be monitored at a repetition rate

defined for the application.

4.13 Table 13: Input Assembly 105 (max. 960 bytes)

Input Assembly 106 includes range measurement data for the selected area of interest. Using explicit

TCP/IP request/reply messages or an implicit UDP I/O connection the scanner can be monitored at a

repetition rate defined for the application.

4.14 Table 14: Input Assembly 106 (max. 554 bytes)

Input Assembly 107 includes reflectivity measurement data for the selected area of interest. Using

explicit TCP/IP request/reply messages or an implicit UDP I/O connection the scanner can be

monitored at a repetition rate defined for the application.

4.15 Table 15: Input Assembly 107 (max. 554 bytes)

28 - 479
Range (TOF)

data[]
UINT 16-bit

Range measurement data, variable size.
Size selected using the beam report mask configuration. *
Array Size = Number of Beams included in measurement report header,
maximum size = 452 without tags.

* See Table 5: Output Assembly 114 (108 bytes), Measurement Report Configuration for Input Assembly 104 & 105 for beam selection
mask usage.

28 - 479
Reflectivity (TOT)

data[]
UINT 16-bit

Reflectivity measurement data, variable size.
Size selected using the beam report mask configuration. *
Array Size = Number of Beams included in measurement report header,
maximum size =452 without tags.

* See Table 5: Output Assembly 114 (108 bytes), Measurement Report Configuration for Input Assembly 104 & 105 for beam selection
mask usage.

0 - 276
Range (TOF)

data[]
UINT 16-bit

Range measurement data, variable size.
Size selected using the beam report mask configuration. *
Array Size = Number of Beams included in measurement report header,
maximum size = 277 without tags.

* See Table 6 : Output Assembly 115 (316 bytes), Measurement Report Configuration for Input Assembly 106 through 111

0 - 276
Reflectivity (TOT)

data[]
UINT 16-bit

Reflectivity measurement data, variable size.
Size selected using the beam report mask configuration. *
Array Size = Number of Beams included in measurement report header,
maximum size =277 without tags.

* See Table 6 : Output Assembly 115 (316 bytes), Measurement Report Configuration for Input Assembly 106 through 111

22

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

EtherNet/IP Input Assembly Data

Input Assembly 108 includes range measurement data for the selected area of interest. Using explicit

TCP/IP request/reply messages or an implicit UDP I/O connection the scanner can be monitored at a

repetition rate defined for the application.

4.16 Table 16: Input Assembly 108 (max. 454 bytes)

Input Assembly 109 includes reflectivity measurement data for the selected area of interest. Using

explicit TCP/IP request/reply messages or an implicit UDP I/O connection the scanner can be

monitored at a repetition rate defined for the application.

4.17 Table 17: Input Assembly 109 (max. 454 bytes)

Input Assembly 110 includes range measurement data for the selected area of interest. Using explicit

TCP/IP request/reply messages or an implicit UDP I/O connection the scanner can be monitored at a

repetition rate defined for the application.

4.18 Table 18: Input Assembly 110 (max. 358 bytes)

Input Assembly 111 includes reflectivity measurement data for the selected area of interest. Using

explicit TCP/IP request/reply messages or an implicit UDP I/O connection the scanner can be

monitored at a repetition rate defined for the application.

4.19 Table 19: Input Assembly 111 (max. 358 bytes)

4.20 Data Refresh Rate (Expected Packet Rate)

The data refresh rate for the scanner is approximately 40 (38.5 to 39.5) milliseconds. When configuring

the scanner on an EtherNet/IP PLC network it is recommended to set the expected packet rate for the

input assembly data to a value of 50 milliseconds or more.

0 - 226
Range (TOF)

data[]
UINT 16-bit

Range measurement data, variable size.
Size selected using the beam report mask configuration. *
Array Size = Number of Beams included in measurement report header,
maximum size = 227 without tags.

* See Table 6 : Output Assembly 115 (316 bytes), Measurement Report Configuration for Input Assembly 106 through 111

0 - 226
Reflectivity (TOT)

data[]
UINT 16-bit

Reflectivity measurement data, variable size.
Size selected using the beam report mask configuration. *
Array Size = Number of Beams included in measurement report header,
maximum size =227 without tags.

* See Table 6 : Output Assembly 115 (316 bytes), Measurement Report Configuration for Input Assembly 106 through 111

0 -178
Range (TOF)

data[]
UINT 16-bit

Range measurement data, variable size.
Size selected using the beam report mask configuration. *
Array Size = Number of Beams included in measurement report header,
maximum size = 179 without tags.

* See Table 6 : Output Assembly 115 (316 bytes), Measurement Report Configuration for Input Assembly 106 through 111

0 - 178
Reflectivity (TOT)

data[]
UINT 16-bit

Reflectivity measurement data, variable size.
Size selected using the beam report mask configuration. *
Array Size = Number of Beams included in measurement report header,
maximum size =179 without tags.

* See Table 6 : Output Assembly 115 (316 bytes), Measurement Report Configuration for Input Assembly 106 through 111

23
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

EtherNet/IP Input Assembly Data

E

4.21 Active Warning Zone Set Selection

When the scanners "Monitoring zone" is configured for multiple detection zone sets and the "Warning

zone selection by EIP" is enabled, the EtherNet/IP interface can be used to change the active warning

zone set instead of using the zone inputs. When this feature is enabled an EtherNet/IP network device

must select one of the 70 possible preprogrammed warning zone sets before starting normal

operation. For more information on zone configuration and selection, see sections "Zone Set Selection

and Configuration" and "Zone Set Input Selection" in the OS32C user manual. The switching time of

the active warning zone set using the EtherNet/IP interface is one scan cycle or approximately 40

milliseconds. Output assembly objects 113, 114, 115 each can be used to define the active warning

zone set as well as the vendor specific object 115 listed in Table 4.

24

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Installing the OS32C EDS file

5. Installing the OS32C EDS file
The EDS file for the OS32C can be found on the OS32C Configuration Tool CD that is shipped with the

scanner.

To install the EDS file in Omron's Network Configurator software:

From the EDS File menu, select Install.

Fig. 5-1 Install EDS File

When prompted, locate the EDS file then click OK. The OS32C will now appear in the hardware list on the left

side of the Network Configurator window.

25
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing a connection with Omron CJ2

E

6. Establishing a connection with Omron CJ2
This section provides step by step instructions for setting up communication from the OS32C to Omron's CJ2

(or CJ1) PLC via EtherNet/IP.

6.1 Setting up the EtherNet/IP Network

Start up Network Configurator and create a new EtherNet/IP network.

Drag and drop the OS32C and the CJ2B-EIP21 from the hardware list onto the EtherNet/IP network in

Network Configurator.

Fig. 6-1 Select Devices from Hardware List

Make sure the IP addresses match the IP address of the respective devices. To change the IP address

of the device, right click on the device icon and select Change Node Address.

Fig. 6-2 Change Node Address

In this example, the OS32C has an IP address of 192.168.250.1 and the CJ2 has an IP address of

192.168.250.2

6.2 Setting up EtherNet/IP Tags for the CJ2

Double-click the CJ2B-EIP21 icon and select the Tag Sets tab, select the In-Consume tab, then click

the Edit Tags button.

26

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing a connection with Omron CJ2

Fig. 6-3 Edit Tags

Select the In-Consume tab then click New to create a new tag:

Fig. 6-4 Create New Tag

For the Name field, enter the memory location in the PLC where the OS32C data will be written to. For

this example, enter D0 for the name to specify the DM memory area 0 of the CJ2.

NOTE: upper case letters must be used when specifying these memory area. In this case, enter “D0”

exactly as shown. A lower case “d” will not work.

Enter 32 bytes for the size field. When done, click the Regist button, then the Close button.

Fig. 6-5 Register Tag

27
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing a connection with Omron CJ2

E

Select the Out-Produce tab then click New to create a new tag:

Fig. 6-6 Create New Tag

Enter D100 for the name to specify DM memory area 100 of the CJ2. Reminder: the D in D100 must

be upper case. Enter 2 bytes for the size. When done, click the Regist button, then the Close button.

Fig. 6-7 Register Tag

Click OK to complete the creation of the tags.

Fig. 6-8 Click OK

When prompted, click Yes to register the new Tags as Tag Sets:

28

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing a connection with Omron CJ2

Fig. 6-9 Register Tag Sets

Select the Connections tab, highlight the OS32C, then click the down arrow to register the OS32C as

a slave device to the CJ2:

Fig. 6-10 Register OS32C to CJ2

Once the OS32C is listed under the Register Device List, double-click on the OS32C to edit the

connection. Under the Originator Device, select the input and output tag sets that were just created, so

that it matches the screenshot below.

29
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing a connection with Omron CJ2

E

Fig. 6-11 Edit Connection Window

Click the Show Detail button in the lower left hand corner of this window. Set the RPI to 200 ms. Click

the Regist button when finished then click Close.

Fig. 6-12 Packet Interval Setting

Click OK in the Edit Device Parameters window:

30

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing a connection with Omron CJ2

Fig. 6-13 OS32C Is Registered

6.3 Downloading EtherNet/IP Configuration to the CJ2

Now that the Tags have been set up, the EtherNet/IP configuration needs to be downloaded to the

CJ2. Connect the computer to the CJ2 via USB cable.

In the Network Configurator, go to the Option menu, choose Select Interface, then select CJ2 USB/

Serial Port.

Fig. 6-14 Select Interface

From the Network menu, select Connect.

Select TCP:2, then click OK to connect.

Fig. 6-15 Select Network Port

Right click on the CJ2B icon, select Parameter, then select Download.

31
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing a connection with Omron CJ2

E

Fig. 6-16 Download to Device

To download to the CJ2 module without changing the PLC to Program mode, click Download with

Current Mode when prompted:

Fig. 6-17 Download with Current Mode

32

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing a connection with Omron NJ

7. Establishing a connection with Omron NJ
This section provides step by step instructions for setting up communication from the OS32C to Omron's NJ5

PLC using EtherNet/IP communications.

7.1 NJ5 MAC EtherNet/IP Adapter Setup
Open the Sysmac Studio programming software and either open the project associated with the

machine or create a new one. Double click on the Built-in EtherNet/IP Port Setting option under

Configurations and Setup as shown below:

Fig. 7-1 Built-in EtherNet/IP Port Setting

In the window that appears, make the appropriate IP address setting to the NJ. In this example the NJ

will be set to 192.168.250.2 and the OS32C will be set to 192.168.250.7

Fig. 7-2 IP Address Setting

7.2 Setting up tags in the NJ Controller

The NJ supports tag based I/O structures and these tags need to be generated in order for the OS32C

to communicate correctly with the NJ controller via EtherNet/IP.

Under the Programming tab in the menu tab select Data and then Data Types.

33
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing a connection with Omron NJ

E

Fig. 7-3 Data Types

In the window that appears, right click on "Name" and select Create New Data Type.

Fig. 7-4 Create New Data Type

Two new data types will need to be created, "OS32C_Scanner_IN" and "OS32C_Scanner_OUT",

along with the Base Type "STRUCT". The tags will look like the following screenshot:

Fig. 7-5 OS32C IN and OUT Structure Data Types

Once the base tag has been created, assembly I/O data needs to be added to each tag. Right click on

the tag name and select Create New Member. Repeat this until all I/O data is created as shown in the

figure below:

34

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing a connection with Omron NJ

Fig. 7-6 OS32C IN and OUT Structure Members

7.3 Setting Tags into Global Variable Section

Once the OS32C EtherNet/IP tags and I/O data have been created in the NJ, a global variable will

have to be generated for every laser scanner that the NJ will establish EtherNet/IP communications

with.

Click on the Global Variables option in the project work space. Right click in the global variable

window and select Create New and a new variable will be created.

Fig. 7-7 Global Variables

Fig. 7-8 Create New Global Variable

Give the variable a name and choose the structure name from the variable type. It is also necessary to

define the tag as an input or output on the network. This will need to be done once for the produced

variable and once for the consumed variable.

35
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing a connection with Omron NJ

E

The OS32C produced and consumed tags are shown below:

Fig. 7-9 OS32C Produced and Consumed Tags

Notice that the OS32C produced information is named as an input for the tag creation. This is because

when the OS32C produces data, it is consumed by the NJ5. Therefore, it acts like as an input to the

NJ5. The OS32C consumed information is produced (or output) by the NJ5, so the network publish

type is set to output.

7.4 Exporting Tags to Network Configurator

The tags that have been created in the NJ can now be exported to be used by the Network

Configurator software. Doing this will ensure the tag I/O structure will match.

Under the Tools menu in the main window select Export Global Variables then select Network

Configurator:

Fig. 7-10 Export Global Variables

This will save the data in an Excel spreadsheet as a .csv file to be imported by the Network

Configurator software.

7.5 Configuring the EtherNet/IP Network

To configure the Ethernet /IP connection to the NJ, start up the Network Configurator software and

create a new EtherNet/IP program.

Drag and drop the NJ5 and the OS32C from the hardware list onto the EtherNet/IP network in the

Network Configurator. Ensure the IP addresses match the hardware IP settings.

Fig. 7-11 Add NJ5 and OS32C to the EtherNet/IP Network

Double click on the NJ5 and select the Tag Sets tab. Click the To/From button and select Import

From File.

36

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing a connection with Omron NJ

Fig. 7-12 Import Tag Sets from File

Browse to the .csv file that contains the network tags that were exported from Sysmac Studio, select it

and press OK. When prompted, click Yes to import the symbols. The tags will now appear on the In-

Consume and Out-Produce tabs. When complete, the In - Consume and Out - Produce tabs will

appear as follows:

Fig. 7-13 In - Consume Tab

Fig. 7-14 Out - Produce Tab

Select the Connections tab. The OS32C module will appear under the list of unregistered devices.

Select OS32C module and press the down arrow to move the OS32C from the unregistered device

list to the registered device list.

Once the OS32C is shown in the registered device list, double click on the OS32C which will bring up

an Edit Connection window. Match the tag names on the left hand side up with the input and the output

assemblies on the right hand side. In this example, only one tag will be in the list for each of the

connections. Use 200 for the RPI value. When done, the settings will look like the screenshot below.

37
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing a connection with Omron NJ

E

Fig. 7-15 Edit Connection Window

Press the Regist button at the bottom of the window then press the Close button. Lastly, click OK on

the Edit Device Parameters page.

The network will now look like the screenshot shown below. The arrow (highlighted in the red box)

shows that the node is now registered to the NJ5.

Fig. 7-16 OS32C Is Registered to NJ5

7.6 Downloading EtherNet/IP Configuration to the NJ

Connect the NJ5 to the computer using the USB cable.

In the Network Configurator software, choose the Option pull-down menu then choose Select

Interface, then choose NJ Series USB Port.

From the Network menu, select Connect.

Click on TCP:2 and then press OK.

38

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing a connection with Omron NJ

Fig. 7-17 Select Network Port

Select Use the existing network, and click OK.

Fig. 7-18 Use Existing Network

Right-click the NJ5 icon, select Parameter, then choose Download.

Fig. 7-19 Download to NJ5

To download to the NJ5 without changing the PLC to Program mode, click Download with Current

Mode.

39
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing a connection with Omron NJ

E

Fig. 7-20 Download with Current Mode

When the download is complete, click OK. Setup is now complete.

40

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Setup for multiple OS32Cs or multiple PLCs

8. Setup for multiple OS32Cs or multiple PLCs
The OS32C with EtherNet/IP can be polled in a few different ways. The laser scanner can have multiple

EtherNet/IP master devices polling it for information or one EtherNet/IP master can be set up to poll multiple

scanners.

8.1 One PLC Polling Multiple OS32Cs
One master device can poll multiple laser scanners on the network.

Open Network Configurator and add the number of needed scanners to the EtherNet/IP network. For

this example there are three OS32Cs and a CJ2 PLC.

Fig. 8-1 One PLC with Multiple OS32Cs

Double-click the CJ1W-EIP21 icon and select the Tag Sets tab, select the In-Consume tab, then click

the Edit Tags button.

Fig. 8-2 Edit Tags

41
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Setup for multiple OS32Cs or multiple PLCs

E

Enter D0 for name, this field will determine the memory location written to in the PLC. In the size field

enter 32 bytes, this number needs to match the number of Target Input bytes on the OS32C. This step

will need to be repeated for the number of scanners to be registered to this master. Make sure the

memory locations do not overlap.

Fig. 8-3 Create Input Tags

Click Regist to create the tag. Repeat this for every laser scanner.

Select the Out-Produce tab then Click New to create a new tag.

Enter D100 for name, this field will determine the memory location written to in the PLC. D100 would

be location DM100 in the PLC. The size field needs to be 2 bytes as this number has to match the

number of Target Output bytes on the OS32C.

Fig. 8-4 Create Output Tags

Click Regist to create the tag.

When all tags have been created the tag window should look like this:

Fig. 8-5 Completed Output Tags

42

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Setup for multiple OS32Cs or multiple PLCs

Select the Connections tab, highlight the OS32C and click the Down Arrow as shown below to move

the device from the unregistered device list to the registered device list. Repeat for all scanners that

will be slaves to this master.

Fig. 8-6 Register Each OS32C to PLC

Double click on the scanner in the registered device window to configure each scanner's I/O location in

the PLC. Notice that there will be three different Input and Output Tags to choose from. Select the DM

location in the PLC where the data from the scanner will be written to. This step is needed for every

scanner.

Fig. 8-7 Edit Connection Window

43
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Setup for multiple OS32Cs or multiple PLCs

E

When all scanners have been configured the screen should look like the following figure:

Fig. 8-8 All Scanners Configured

All three laser scanners are now registered to the CJ2:

Fig. 8-9 Registration Complete

8.2 Multiple PLCs Polling One OS32C

The setup for multiple devices polling a single OS32C is very similar to the setup for one device polling

multiple scanners. The key point with this type of configuration is only one device can be the

Exclusive Owner of the scanner while all other master devices need to be configured as Listen only

or Input Only.

Input Only Example

44

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Setup for multiple OS32Cs or multiple PLCs

Fig. 8-10 Input Only Example

Listen Only Example

Fig. 8-11 Listen Only Example

Both of these methods work for this type of configuration but note the differences between these two

options that should be taken in account:

1. Input Only: This type of configuration will generate a message to poll the scanner as the RPI set

rate, this may be an issue if too many devices are requesting data from the scanner.

45
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Setup for multiple OS32Cs or multiple PLCs

E

2.Listen Only: This type of configuration will only listen to messages generated by a master on the

network; it will not generate its own. This is good to limit generated messages on the network but if

the master device stops polling the sensor all other devices will stop as well.

46

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing communications with a computer based device

9. Establishing communications with a computer based
device

This section provides general information for setting up communication connections between the OS32C and

a computer based device. This section provides information from the EtherNet/IP specification necessary to

communicate with the OS32C within a single EtherNet/IP subnet/network. When used in a standard Ethernet

network, communications across subnet/networks is also possible using the communication formats provided

in this manual.

9.1 EtherNet/IP Command Protocol
All electronic datagram command payloads contain a fixed-length header of 24-bytes followed by an

optional data portion. The total datagram payload length is limited to 65535 bytes for TCP/IP

messages and 1500 bytes for UDP/IP messages. Table 10 below outlines the basic structure for

EtherNet/IP commands.

9.1.1 Table 10: EtherNet/IP Datagram Header - Command Format

9.2 EtherNet/IP Command List

EtherNet/IP provides fundamental commands for accessing all scanner data as outlined in Table 11

below.

9.2.1 Table 11: EtherNet/IP Command List

Structure Field Name Data Type Data Size Field Value

Encapsulation
Header

Command UINT 2 bytes Encapsulation command number.

Length UINT 2 bytes Length, in bytes, of the command specific data
portion of the message following the encapsulation
header.

Session Handle ID UDINT 4 bytes Session identification used for configuration and
run-time monitoring.

Status UDINT 4 bytes Status code used in reply messages.

Sender Context
Data

ARRAY of 8 octets 8 bytes Information pertinent only to the sender of an
encapsulation command.

Command options UDINT 4 bytes Optional command flags.

Command specific
data

Command data ARRAY of 0 to
65511 octets

0 to 65511 bytes The encapsulation data portion of the message is
required only for certain commands.

Command Name Command Code Description

NOP 0x0000 A non-operational command used during TCP communications to verify TCP
connections (may be sent only using TCP).

List Services 0x0004 List the scanners EtherNet/IP services available (may be sent using either UDP or
TCP).

List Identity 0x0063 List the scanners EtherNet/IP identity, vendor ID, device ID, serial number and other
information (may be sent using either UDP or TCP).

List Interfaces 0x0064 List the scanners EtherNet/IP assembly and input/output object interfaces available
(may be sent using either UDP or TCP).

Register Session 0x0065 Open and register a communication session with the scanner (may be sent only using
TCP).

47
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing communications with a computer based device

E

If the command requests are successfully registered with the scanner, the Status field shall be zero (0).

If the command requests are not successfully registered, the Status field shall contain the one of the

following error codes.

9.2.2 Table 12: EtherNet/IP Status Error Code List

9.3 EtherNet/IP Command Specific Data

Command specific data provided by the scanner must follow the CIP Common Packet Format as

shown in Table 13 below.

9.3.1 Table 13: EtherNet/IP Common Packet Format (CPF)

Un-Register Session 0x0066 Close the registered communication session with the scanner (may be sent only using
TCP).

SendRRData 0x006F Send a request/reply command to the scanner along with a sub-command and optional
data (may be sent only using TCP).

Error Codes Description

0x0000 No error in command request.

0x0001 Invalid command used in request.

0x0002 Insufficient memory in target device.

0x0003 Incorrect data used in request.

0x0064 Invalid session handle used in request.

0x0065 Invalid command length used in request.

0x0069 Unsupported Protocol Version used in request.

Field Name Data Type Description

Item count UINT Number of items to follow

Item #1 Item Structure Field Name Data Type Description 1st Common Packet Format (CPF) item

Type ID UINT Type of item
encapsulated

Length UINT Length in bytes
of the Data
Field

Data Variable The data (if
length >0)

Item #2 Item Structure (see above) 2nd CPF item

------ ------ ------

Item #n Item Structure (see above) nth CPF item

Command Name Command Code Description

48

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing communications with a computer based device

9.4 EtherNet/IP Commands

9.4.1 List Identity Command

A connection originator may use the List Identity command to locate and identify the scanner. This

command shall be sent as a unicast message using TCP or UDP, or as a broadcast message using

UDP and does not require that a session be established. The reply shall always be sent as a unicast

message.

When received as a broadcast message, the receiving device shall delay for a pseudo-random period

of time prior to sending the reply as specified in section 2-4.2.3 of the EtherNet/IP standard. Delaying

before sending the reply helps to spread out any resulting ARP requests and List Identity replies from

target devices on the network.

9.4.2 Table 14: List Identity Command Request

9.4.3 Table 15: List Identity Command Reply

Datagram Field Name Field Value Data Type Data Size Comments

EtherNet/IP
Header

Command 0x0063 UINT 2 bytes List Identity Command

Length 0 UINT 2 bytes Length of command specific data.

Session
Handle ID

Any value UDINT 4 bytes Any value (ignored by target).

Status 0 UDINT 4 bytes 0

Sender
Context Data

UINT 2 bytes Maximum Response Delay in milliseconds.

0 ARRAY[6] 6 bytes Reserved shall be ignored by receiver, values shall
be 0.

Command
options

0 UDINT 4 bytes 0

Datagram Field Name Field Value Data
Type

Data
Size

Comments

EtherNet/IP
Header

Command 0x0063 UINT 2 bytes List Identity Command

Length UINT 2 bytes Length of command specific data.

Session Handle
ID

UDINT 4 bytes Any value (ignored by receiver).

Status 0 UDINT 4 bytes Error status equals 0x0000 if successful.

Sender Context
Data

Array[8] ARRAY
of octet

8 bytes Value from the original request. Length of 8.
Maximum Response Delay in milliseconds.

Command
options

0 UDINT 4 bytes

Command
Specific Data

Item Count 1 UINT 2 bytes

Item ID 0x0C UINT 2 bytes CIP Identity Object.

Item Length 2 UINT 2 bytes Number of bytes in item.

ARRAY of octet See Table 16: EtherNet/IP Identity Object Parameters

49
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing communications with a computer based device

E

9.4.4 Table 16: EtherNet/IP Identity Object Parameters

9.4.5 Register Scanner Session Command

The register session procedure is a single step process which only involves obtaining a TCP session

handle from the scanner using the TCP port. Once the session handle is obtained it can be used for all

subsequent TCP and UDP I/O communications. Standard UDP communications using the List Identity

or List Interface commands do not require a session handle.

9.4.5.1 Required Sequence:

• Request a session handle from the scanner using the Register Session command.

9.4.6 Table 17: Register Session Command Request

9.4.7 Table 18: Register Session Command Reply

Parameter Name Data Type Description

Encapsulation Protocol Version UINT Encapsulation Protocol Version supported (also returned with Register Session
reply).

Socket Address Structure of

INT sin_family (big-endian)

UINT sin_port (big-endian)

UDINT sin_addr (big-endian)

ARRAY[8] UINT8 [8] sin_zero (length of 8) (big-endian)

Vendor ID UINT Device manufacturers Vendor ID

Device Type UINT Device Type of product

Product Code UINT Product Code assigned with respect to device type

Revision ARRAY[2] Device revision

Status WORD Current status of device

Serial Number UDINT Serial number of device

Product Name ARRAY[32] Human readable description of device

State UINT8 Current state of device

Datagram part Field Name Field Value Data Type Data Size Comments

EtherNet/IP
Header

Command 0x0065 UINT 2 bytes Request a session handle

Length 4 UINT 2 bytes Length of command specific data.

Session Handle ID 0 UDINT 4 bytes Any value (ignored by scanner)

Status 0 UDINT 4 bytes

Sender Context Data Array[8] ARRAY of
octet

8 bytes Any value. Length of 8.

Command options 0 UDINT 4 bytes 0

Command
Specific Data

Protocol Version 1 UINT 2 bytes

Option flags 0 UINT 2 bytes

Telegram-
Datagram part

Field Name Field Value Data Type Data Size Comments

EtherNet/IP
Header

Command 0x0065 UINT 2 bytes Request a session handle

Length 4 UINT 2 bytes Length of command specific data.

50

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing communications with a computer based device

The Session Handle field of the header shall contain a scanner generated identifier that the client

application shall save and insert in the Session Handle field of the header for all subsequent command

requests. This field shall be valid only if the Status field is zero (0). If the client application was

successfully registered with the scanner, the Status field shall be zero (0). If the client application was

not successfully registered, the Status field shall contain the appropriate error code, as follows:

•Error code 0x0001 shall be returned if the client application attempts to register more than 1 active

session on the same TCP connection.

•Error code 0x0002 shall be returned if the scanner does not have sufficient resources to register the

client application.

•Error code 0x0069 shall be returned for Protocol Version or Options mismatches, as described below:

The Protocol Version field shall equal the requested version if the client application was successfully

registered. If the scanner does not support the requested version of the protocol,

•the session shall not be created;

•the Status field shall be set to 'unsupported encapsulation protocol' (0x0069);

•the scanner shall return the highest supported version in the Protocol Version field;

9.4.8 Un-Register Scanner Session Command

Either the client application or the scanner may send this command to terminate the session using the

TCP port. The receiver shall initiate a close of the underlying TCP/IP connection when it receives this

command. The session shall also be terminated when the connection between the client application

and scanner is terminated. The receiver shall perform any other associated cleanup required on its

end. There shall be no reply to this command.

9.4.8.1 Required Sequence:

• After a request of a session handle from the scanner using the Register Session command (see

section 9.4.5).

• Logoff the scanner using the current session handle.

Session Handle
ID

UDINT 4 bytes Session Handle ID returned by the scanner.

Status 0 UDINT 4 bytes Error status equals 0x0000 if successful.

Sender Context
Data

Array[8] ARRAY of
octet

8 bytes Value from request. Length of 8.

Command
options

0 UDINT 4 bytes 0

Command Specific
Data

Protocol Version UINT 2 bytes Version from Register Session request if supported. If
the request version is not supported, contains the
highest version supported.

Option flags UINT 2 bytes Option flags from Register Session request if
supported. If the request Option flags are not
supported, contains the supported Option flags.

Telegram-
Datagram part

Field Name Field Value Data Type Data Size Comments

51
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing communications with a computer based device

E

9.4.9 Table 19: Un-Register Session Command Request

The receiver shall not reject the Un-Register Session due to unexpected values in the encapsulation

header (invalid Session Handle, non-zero Status, non-zero Options, or additional command data). In

all cases the TCP connection shall be closed.

9.4.10 SendRRData Command

The SendRRData command is used to send an encapsulated request/reply packet between the

originator and target scanner using the TCP port, where the originator initiates the command. The

actual request/reply packets shall be encapsulated in the data portion of the message and are the

responsibility of the target scanner and originator.

9.4.11 Table 20: SendRRData Command Request

9.4.12 Table 21: Get Single Attribute Service Code Request CPF Data

Telegram-
Datagram part

Field Name Field Value Data Type Data Size Comments

EtherNet/IP
Header

Command 0x0066 UINT 2 bytes Terminate the Session.

Length 0 UINT 2 bytes Length of command specific data.

Session Handle ID UDINT 4 bytes Value of current Session Handle ID.

Status 0 UDINT 4 bytes

Sender Context
Data

Array[8] ARRAY of
octet

8 bytes Any value. Length of 8 (ignored by scanner).

Command options 0 UDINT 4 bytes 0

Datagram Field Name Field Value Data Type Data Size Comments

EtherNet/IP
Header

Command 0x006F UINT 2 bytes SendRRData Command

Length UINT 2 bytes Length of command specific data.

Session Handle
ID

UDINT 4 bytes Session Handle ID received in the Register Session reply
message.

Status 0 UDINT 4 bytes 0

Sender Context
Data

0 ARRAY[8] 8 bytes Reserved shall be ignored by receiver, values shall be 0.

Command
options

0 UDINT 4 bytes 0

Command
Specific Data

Interface Handle
ID

0 UDINT 4 bytes Interface Handle selected by originator (PLC or PC).

Timeout 0 UINT 2 bytes 0 to 65535 in seconds.

Encapsulation
packet

See Common Packet Format specification in section 9.3
and section 9.4.12 Table 21: Get Single Attribute Service
Code Request CPF Data.

Field Name Sub-Field Name Field Value Data Type Data Size Comments

Encapsulation packet Item count 2 UINT 2 bytes Number of items to follow

Item #1 / Type ID 0 UINT 2 bytes Address Item Type ID

Item #1 / Length 0 UINT 2 bytes Address Item Length

Item #2 / Type ID 0xB2 UINT 2 bytes Data Item Type ID

Item #2 / Length 8 UINT 2 bytes Data Item Length

52

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing communications with a computer based device

9.4.13 Table 22: SendRRData Command Reply to a Get Single Attribute Request

9.4.14 Table 23: Set Single Attribute Service Code Request CPF Data

Data Item 1 Service Code # UINT8 1 byte Get or Set Single Attribute Request

Data Item 2 0x03 UINT8 1 byte Request Path Size in Words

Data Item 3 0x20 UINT8 1 byte Logical Class Type

Data Item 4 Class # UINT8 1 byte Logical Class Number

Data Item 5 0x24 UINT8 1 byte Logical Instance Type

Data Item 6 Instance # UINT8 1 byte Logical Instance Number

Data Item 7 0x30 UINT8 1 byte Logical Attribute Type

Data Item 8 Attribute # UINT8 1 byte Logical Attribute Number

Datagram Field Name Field Value Data Type Data Size Comments

EtherNet/IP
Header

Command 0x006F UINT 2 bytes SendRRData Command

Length UINT 2 bytes Length of command specific data.

Session Handle ID UDINT 4 bytes Session Handle received in the Register Session
reply message.

Status 0 UDINT 4 bytes Error status equals 0x0000 if successful.

Sender Context
Data

Array[8] ARRAY of
octet

8 bytes Value from request. Length of 8.

Command options 0 UDINT 4 bytes

Command
Specific Data

Interface Handle
ID

0 UDINT 4 bytes Interface Handle selected by originator (PLC or
PC).

Timeout 0 UINT 2 bytes 0 to 65535 in seconds.

Encapsulation
Packet

Item count 2 UINT 2 bytes Number of items to follow

Item #1 / Type ID 0 UINT 2 bytes Address Item Type ID

Item #1 / Length 0 UINT 2 bytes Address Item Length

Item #2 / Type ID 0xB2 UINT 2 bytes Data Item Type ID

Item #2 / Length 8 + data length UINT 2 bytes Data Item Length

Data Item 1 Response UINT8 1 byte Get or Set Single Attribute Response Code

Reserved field 0 UINT8 1 byte Reserve field not used.

Data Item 2 Status UINT8 1 byte Get or Set Single Attribute error status code.

Data Item 3 Additional
Status Size

UINT8 1 byte Number of additional error status information in 16-
bit words .

Attribute Data Data Array ARRAY[] Length of
data

Attribute Data if any.

Field Name Sub-Field Name Field Value Data Type Data Size Comments

Encapsulation
packet

Item count 2 UINT 2 bytes Number of items to follow

Item #1 / Type ID 0 UINT 2 bytes Address Item Type ID

Item #1 / Length 0 UINT 2 bytes Address Item Length

Item #2 / Type ID 0xB2 UINT 2 bytes Data Item Type ID

Item #2 / Length 8 + data
length

UINT 2 bytes Data Item Length

Field Name Sub-Field Name Field Value Data Type Data Size Comments

53
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing communications with a computer based device

E

9.4.15 Table 24: SendRRData Command Reply to a Set Single Attribute Request

The SendRRData command is also used to establish a UDP I/O connection between the originating

(PC or PLC) and the target (OS32C) devices. Section 9.4.16 Table 25: Large Forward Open Request

Encapsulation Packet describes the common packet format used along with the SendRRData

command in order to initiate a streaming UDP I/O connection from the OS32C scanner.

Data Item 1 Service Code
#

UINT8 1 byte Get or Set Single Attribute Request

Data Item 2 0x03 UINT8 1 byte Request Path Size in Words

Data Item 3 0x20 UINT8 1 byte Logical Class Type

Data Item 4 Class # UINT8 1 byte Logical Class Number

Data Item 5 0x24 UINT8 1 byte Logical Instance Type

Data Item 6 Instance # UINT8 1 byte Logical Instance Number

Data Item 7 0x30 UINT8 1 byte Logical Attribute Type

Data Item 8 Attribute # UINT8 1 byte Logical Attribute Number

Data Array ARRAY[] Length of
attribute data

Attribute Data

Datagram Field Name Field Value Data Type Data Size Comments

EtherNet/IP
Header

Command 0x006F UINT 2 bytes SendRRData Command

Length UINT 2 bytes Length of command specific data.

Session Handle ID UDINT 4 bytes Session Handle received in the Register Session reply
message.

Status 0 UDINT 4 bytes Error status equals 0x0000 if successful.

Sender Context
Data

Array[8] ARRAY of
octet

8 bytes Value from request. Length of 8.

Command options 0 UDINT 4 bytes

Command
Specific Data

Interface Handle
ID

UDINT 4 bytes Interface Handle selected by originator (PLC or PC).

Timeout 0 UINT 2 bytes 0 to 65535 in seconds.

Encapsulation
Packet

Item count 2 UINT 2 bytes Number of items to follow

Item #1 / Type ID 0 UINT 2 bytes Address Item Type ID

Item #1 / Length 0 UINT 2 bytes Address Item Length

Item #2 / Type ID 0xB2 UINT 2 bytes Data Item Type ID

Item #2 / Length 8 + data
length

UINT 2 bytes Data Item Length

Data Item 1 Response UINT8 1 byte Get or Set Single Attribute Response Code

Reserved field 0 UINT8 1 byte Reserve field not used.

Data Item 2 Status UINT8 1 byte Get or Set Single Attribute error status code.

Data Item 3 Additional
Status Size

UINT8 1 byte Number of additional error status information in 16-bit
words .

Field Name Sub-Field Name Field Value Data Type Data Size Comments

54

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing communications with a computer based device

9.4.16 Table 25: Large Forward Open Request Encapsulation Packet

Datagram Field Name Field Value Data Type Data Size Comments

EtherNet/IP
Header

Command 0x006F UINT 2 bytes SendRRData Command

Length UINT 2 bytes Length of command specific data.

Session Handle ID UDINT 4 bytes Session Handle received in the Register Session reply
message.

Status 0 UDINT 4 bytes Error status equals 0x0000 if successful.

Sender Context
Data

Array[8] ARRAY of
octet

8 bytes Value from request. Length of 8.

Command options 0 UDINT 4 bytes

Command
Specific Data

Interface Handle
ID

UDINT 4 bytes Interface Handle selected by originator (PLC or PC).

Timeout 0 UINT 2 bytes 0 to 65535 in seconds.

Encapsulation
packet

Item count 2 UINT 2 bytes Number of items to follow

Item #1 / Type ID 0 UINT 2 bytes Address Item Type ID

Item #1 / Length 0 UINT 2 bytes Address Item Length

Item #2 / Type ID 0xB2 UINT 2 bytes Data Item Type ID

Item #2 / Length (ex. 54) UINT 2 bytes Data Item Length, length of data to follow below.

Data Item 1 0x5B UINT8 1 byte Large Forward Open Request

Data Item 2 0x02 UINT8 1 byte Request Path Size in Words

Data Item 3 0x20 UINT8 1 byte Logical Class Type

Data Item 4 0x06 UINT8 1 byte Logical Class Request

Data Item 5 0x24 UINT8 1 byte Logical Instance Type

Data Item 6 0x01 UINT8 1 byte Logical Instance Request

Data Item 7 0x06 UINT8 1 byte Priority Time Tick

Data Item 8 (ex. 880) UINT8 1 byte Timeout Ticks (ms)

Data Item 9 0 UDINT 4 bytes O->T identification number

Data Item 10 Any UDINT 4 bytes T->O identification number, use a random number here.

Data Item 11 Any UINT 2 bytes Connection serial number.

Data Item 12 405 UINT 2 bytes Vendor identification number, use of the ORT vendor ID
is acceptable here.

Data Item 13 Any UDINT 4 bytes Originator serial number

Data Item 14 0 UINT8 1 byte Connection Timeout Multiplier
(default = 0)

Data Item 15 0 UINT8 1 byte Reserved

Data Item 16 0 UINT8 1 byte Reserved

Data Item 17 0 UINT8 1 byte Reserved

Data Item 18 Any
(ex.880000)

UDINT 4 bytes O->T repetitive packet interval (RPI) in microseconds
(us).

Data Item 19 (ex.0x48000
008)

UDINT 4 bytes O->T connection parameters.
See EDS file.

Data Item 20 Any
(ex.80000)

UDINT 4 bytes T->O repetitive packet interval (RPI) in microseconds
(us).

Data Item 21 (ex.0x48000
588)

UDINT 4 bytes T->O connection parameters.
See EDS file.

Data Item 22 0x01 UINT8 1 byte Transport Class Trigger, Client.

Data Item 23 0x04 UINT8 1 byte Number of words in connection path.

Data Item 24 0x20 UINT8 1 byte Connection path class, instance.

Data Item 25 0x04 UINT8 1 byte Assembly Object connection path logical class.

55
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing communications with a computer based device

E

9.4.17 Table 26: SendRRData Command Reply to a Large Forward Open Request

Once the UDP I/O connection has been established the target device will stream assembly data to the

originating device at the accepted packet interval. Section 9.4.18 Table 27: UDP I/O connection packet

below describes the format of the data stream sent by the OS32C scanner (target device).

Data Item 26 0x24 UINT8 1 byte Connection path logical instance segment.

Data Item 27 0x01 UINT8 1 byte Connection path logical instance.

Data Item 28 0x2c UINT8 1 byte Connection point, O->T

Data Item 29 any
(ex. 112)

UINT8 1 byte Output assembly number
See EDS file.

Data Item 30 0x2c UINT8 1 byte Connection point, T->0

Data Item 31 any
(ex. 102)

UINT8 1 byte Input assembly number
See EDS file.

Datagram Field Name Field Value Data Type Data Size Comments

EtherNet/IP
Header

Command 0x006F UINT 2 bytes SendRRData Command

Length UINT 2 bytes Length of command specific data.

Session Handle ID UDINT 4 bytes Session Handle received in the Register
Session reply message.

Status 0 UDINT 4 bytes 0 if successful.

Sender Context Data Array[8] ARRAY of octet 8 bytes Value from request. Length of 8.

Command options 0 UDINT 4 bytes

Command
Specific Data

Connection Interface
Handle

UDINT 4 bytes Connection interface handle to be used in
data stream.

Timeout Period UINT 2 bytes Connection timeout period to be used in timer.

Encapsulation
Data

Item count 4 UINT 2 bytes Number of items to follow.

Item #1 / Type ID 0 UINT 2 bytes Address Item Type ID

Item #1 / Length 0 UINT 2 bytes Address Item Length

Item #2 / Type ID 0xB2 UINT 2 bytes Data Item Type ID

Item #2 / Length Data length UINT 2 bytes Data Item Length, length of data to follow
below.

Data Item 1 Response
(ex. 0xDB)

UINT8 1 byte Response Code

Reserved field 0 UINT8 1 byte Reserve field not used.

Data Item 2 Status UINT8 1 byte Status Code

Data Item 3 Additional
Status Size

UINT8 1 byte Additional status size data. If not zero, check
following error status word.

Data Item 4 UDINT 4 bytes O->T identification number (ID).

Data Item 5 UDINT 4 bytes T->O identification number (ID).

Data Item 6 UINT 2 bytes Connection serial number.

Data Item 7 UINT 2 bytes Originator Vendor ID number.

Data Item 8 UDINT 4 bytes Originator serial number.

Data Item 9 UDINT 4 bytes O->T accepted packet interval (API).

Data Item 10 UDINT 4 bytes T->O accepted packet interval (API).

Data Item 11 Data Size UINT8 1 byte Application data size.

Data Array ARRAY[] Length of
data size

Data if any.

Datagram Field Name Field Value Data Type Data Size Comments

56

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing communications with a computer based device

9.4.18 Table 27: UDP I/O connection packet

To terminate the UDP I/O connection the originating device must send the SendRRData command

along with the Forward Close Request. Section 9.4.19 Table 28: Forward Close Request

Encapsulation Packet below describes the format of the encapsulated message sent to the OS32C

scanner (target device).

Field Name Sub-Field Name Field Value Data Type Data Size Comments

Encapsulation
packet

Item count UINT 2 bytes Number of items to follow

Item #1 / Type ID UINT 2 bytes Address Item Type ID

Item #1 / Length UINT 2 bytes Address Item Length

Item #1 / Connection ID UDINT 4 bytes Connection ID number

Item #1 / Sequence ID UDINT 4 bytes Sequence ID number

Item #2 / Type ID UINT 2 bytes Data Item Type ID

Item #2 / Length UINT 2 bytes Data Item Length, length of data to follow below.

Sequence Number UINT 2 bytes Packet Sequence number

Data Array ARRAY[] Length of
data length
- 2 bytes

Assembly Object Data

57
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Establishing communications with a computer based device

E

9.4.19 Table 28: Forward Close Request Encapsulation Packet

Datagram Field Name Field Value Data Type Data Size Comments

EtherNet/IP
Header

Command 0x006F UINT 2 bytes SendRRData Command

Length UINT 2 bytes Length of command specific data.

Session Handle
ID

UDINT 4 bytes Session Handle received in the Register Session reply
message.

Status 0 UDINT 4 bytes

Sender Context
Data

Array[8] ARRAY of
octet

8 bytes Value from request. Length of 8.

Command options 0 UDINT 4 bytes

Command
Specific Data

Connection
Interface Handle

UDINT 4 bytes Connection interface handle to be used in data stream.

Timeout Period UINT 2 bytes Connection timeout period to be used in timer.

Encapsulation
packet

Item count 2 UINT 2 bytes Number of items to follow

Item #1 / Type ID 0 UINT 2 bytes Address Item Type ID

Item #1 / Length 0 UINT 2 bytes Address Item Length

Item #2 / Type ID 0xB2 UINT 2 bytes Data Item Type ID

Item #2 / Length (ex. 0x16) UINT 2 bytes Data Item Length, length of data to follow below.

Data Item 1 0x4E UINT8 1 byte Forward Close Request

Data Item 2 0x02 UINT8 1 byte Number of 16-bit words in path.

Data Item 3 0x20 UINT8 1 byte Logical class segment

Data Item 4 0x06 UINT8 1 byte Logical class request - Message Router

Data Item 5 0x24 UINT8 1 byte Logical instance segment

Data Item 6 0x01 UINT8 1 byte Logical instance request.

Data Item 7 0x06 UINT8 1 byte Priority Time Tick

Data Item 8 (ex. 880) UINT8 1 byte Timeout Ticks (ms)

Data Item 9 UDINT 4 bytes Originator serial number

Data Item 10 2 UINT8 1 byte Number of 16-bit words in path.

Data Item 11 0 UINT8 1 byte Reserved

Data Item 12 0x20 UINT8 1 byte Logical class segment

Data Item 13 0x02 UINT8 1 byte Logical class request - Connection Manager

Data Item 14 0x24 UINT8 1 byte Logical instance segment

Data Item 15 0x01 UINT8 1 byte Logical instance request.

58

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Establishing communications with a computer based device

9.4.20 Table 29: SendRRData Command Reply to a Forward Close Request

Datagram Field Name Field Value Data Type Data Size Comments

EtherNet/IP
Header

Command 0x006F UINT 2 bytes SendRRData Command

Length UINT 2 bytes Length of command specific data.

Session Handle ID UDINT 4 bytes Session Handle received in the Register Session reply
message.

Status 0 UDINT 4 bytes 0 if successful.

Sender Context
Data

Array[8] ARRAY of
octet

8 bytes Value from request. Length of 8.

Command options 0 UDINT 4 bytes

Command
Specific
Data

Connection
Interface Handle

UDINT 4 bytes Connection interface handle to be used in data stream.

Timeout Period UINT 2 bytes Connection timeout period to be used in timer.

Encapsulati
on Data

Item count 2 UINT 2 bytes Number of items to follow.

Item #1 / Type ID 0 UINT 2 bytes Address Item Type ID

Item #1 / Length 0 UINT 2 bytes Address Item Length

Item #2 / Type ID 0xB2 UINT 2 bytes Data Item Type ID

Item #2 / Length Data length UINT 2 bytes Data Item Length, length of data to follow below.

Data Item 1 Response
(ex. 0xCE)

UINT8 1 byte Response Code

Reserved field 0 UINT8 1 byte Reserve field not used.

Data Item 2 Status UINT8 1 byte Status Code

Data Item 4 UINT 2 bytes Connection serial number.

Data Item 5 UINT 2 bytes Originator Vendor ID number.

Data Item 6 UDINT 4 bytes Originator serial number.

Data Item 7 Data Size UINT8 1 byte Application data size. Number of 16-bit words in application
data array.

Reserved field 0 UINT8 1 byte Reserve field not used.

Data Array ARRAY[] Length of
data size

Application data if any.

59
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Application Examples

E

10.Application Examples

10.1 Runtime Monitoring using Explicit TCP/IP Request/Reply Messages

10.1.1 Network Configuration

Configure the scanners IP Address, Subnet Mask and Default Gateway using the OS32C

Configuration Tool (See OS32C User Manual).

10.1.2 Computer/PLC Configuration & Process Control Example

Using the explicit message command information provided in the scanners electronic data sheet,

configure the Computer or PLC device to access the scanners EtherNet/IP Explicit Messages for

monitoring measurement report data. In this example, configure the scanner's run-time monitoring

attributes to monitor two sector locations within the -0.4° to 270.4° scanning field. The following

information outlines the configuration and TCP/IP request/reply commands for this example.

10.1.2.1 Configure the scanner's protection and warning zones

1. Using the scanners configuration tool, configure the scanner for a limited protection zone range of

500 mm.

2. Using the configuration tool, configure the scanners Warning Zone #1 for detection zone range of

1000 mm in sector #1 (0 to 45°).

3. Using configuration tool, configure the scanners Warning Zone #2 for detection zone range of 1500

mm for sector #2 (225 to 270°).

10.1.2.2 Configure the software driver communication ports

•Initialize a UDP/IP port 44818 for performing the discovery process on all connected scanners. The

List identity command can be used to determine which devices are OS32C scanners.

•Initialize a TCP/IP port 44818 for receiving and transmitting all explicit messages used to establish

connections with the OS32C scanners.

•If a UDP I/O connection is required for the application, initialize the UDP/IP port 2222 for receiving and

transmitting all I/O connected messages.

10.1.2.3 Establishing a TCP connection with a scanner using a known IP address

Using the appropriate socket programming language establish a TCP/IP connection to the scanner

using the local computer IP address and the target scanner IP address.

60

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Application Examples

10.1.2.4 Discover the identity of the scanner

Using the List Identity Command described in section 9.4.1determine the serial number and product

name of the target scanner.

PC → SCANNER

Datagram Structure See section 9.4.2 Table 14: List Identity Command Request

Size 24 bytes

Parameters to update EIP_UINT16 Timeout: 0x01F4 = 500 milliseconds.

Hexadecimal 63 00 00 00 00 00 00 00 00 00 00 00 F4 01 00 00 00 00 00 00 00 00 00 00

SCANNER → PC

Datagram Structure See section 9.4.3 Table 15: List Identity Command Reply

Size 90 bytes

List Identity Response Example

Additional
Parameters
returned

EIP_UINT16 item_count = 0x0001
EIP_UINT16 item_id = 0x000C
EIP_UINT16 item_length = 0x003C
EIP_UINT16 encap_version = 0x0001
EIP_UINT8 sock_family[2] = 0x0002 (Big Endian)
EIP_UINT8 sock_port[2] = 0x12AF (Big Endian)
EIP_UINT8 sock_addr[4] = 0x0101A8C0 (Big Endian)
EIP_UINT8 sock_zero[8] = 00 00 00 00 00 00 00 00 (Big Endian)
EIP_UINT16 vendor_id = 0x0195 (405)

EIP_UINT16 device_type = 0x002B (Generic)
EIP_UINT16 product_code = 0x000C (12, OS32C)

EIP_UINT8 revision[2] = 0x030B (v3.11)
EIP_UINT16 current_status = 0x0000
EIP_UINT16 serial_number_low = 0x0649 (AS01609)

EIP_UINT16 serial_number_high = 0x0000
EIP_UINT8 name_length = 0x1A (26)
EIP_UINT8 product_name[name_length] = 4F 53 33 32 43 20 53 61 66 65 74 79 20 4C 61 73
65 72 20 53 63 61 6E 6E 65 72 (OS32C Safety Laser Scanner)
EIP_UINT8 product_state = 0x03 (Operational)

Hexadecimal 63 00 42 00 00 00 00 00 00 00 00 00 F4 01 00 00 00 00 00 00 00 00 00 00
01 00 0C 00 3C 00 01 00 00 02 AF 12 C0 A8 01 01 00 00 00 00 00 00 00
00 95 01 2B 00 0C 00 03 0B 00 00 49 06 00 00 1A 4F 53 33 32 43 20 53
61 66 65 74 79 20 4C 61 73 65 72 20 53 63 61 6E 6E 65 72 03

61
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Application Examples

E

10.1.2.5 Register a communication session with the scanner

Using the Register Scanner Session command described in section 9.4.5, register a session with the

target device in order to obtain the session handle from the target scanner. This session handle will be

used for all further communications with the scanner including terminating the communication session.

PC → SCANNER

Datagram Structure See section 9.4.6 Table 17: Register Session Command Request:

Size 28 bytes

Parameters to
update

EIP_UINT16 length = 0x0004 (Length of command specific data)

EIP_UINT16 protocol_version = 0x0001
EIP_UINT16 option_flags = 0x0000

Hexadecimal 65 00 04 00
00 01 00 00 00

SCANNER → PC

Datagram Structure See section 9.4.7 Table 18: Register Session Command Reply (Successful):

Size 28 bytes

Register Session Response Example

Updated
Parameter(s)
returned

EIP_UINT32 session_handle_id = 0x00000005

Hexadecimal 65 00 04 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 01 00 00 00

62

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Application Examples

10.1.2.6 Configure the scanner's measurement range format

Using the EtherNet/IP SendRRData command send an explicit TCP/IP messages to configure the

range measurement format of the scanner using the following parameters.

o Service code 16 (0x10) // Set Single Attribute

o Object class 115 (0x73) // Vendor Specific Object Class

o Instance 1 (0x01) // Vendor Specific Instance

o Attribute 4 (0x04) // Range Measurement Reporting Format

o UINT16 Data // Data = 1 , RANGE_MEASURE_50M (default value)

PC → SCANNER

Datagram Structure See section 9.4.11 Table 20: SendRRData Command Request:
See section 9.4.14 Table 23: Set Single Attribute Service Code Request CPF Data

Size 50 bytes

Parameters to
update

EIP_UINT16 length = 0x001A (Length of command specific data)

EIP_UINT32 session_handle_id = 0x00000005
EIP_UINT8 service_code = 0x10 (Set_Single_Attribute)
EIP_UINT8 class_code = 0x73 (Vendor Object, Measurement Configuration)
EIP_UINT8 instance_id = 0x01 (Vendor Object Instance)
EIP_UINT8 attribute_id = 0x04 (Range Format Attribute Number)
EIP_UINT16 attribute data = 0x0001 (Range Format Setting)

Hexadecimal 6F 00 1A 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 02 00 00 00 00 00 B2 00 0A 00 10 03 20 73 24 01
30 04 01 00

SCANNER → PC

Datagram Structure See section 9.4.15 Table 24: SendRRData Command Reply to a Set Single Attribute Request

Size 44 bytes

SendRRData Response Example

Updated
Parameter(s)
returned

EIP_UINT16 length = 0x0014 (Length of command specific data)

EIP_UINT16 data_length = 0x0004 (4 bytes of service response data)
EIP_UINT8 service_response = 0x90 (Set_Single_Attribute | 0x80)
EIP_UINT8 service_status = 0x00 (Success)

Hexadecimal 6F 00 14 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 02 00 00 00 00 00 B2 00 04 00 90 00 00 00

63
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Application Examples

E

10.1.2.7 Configure the scanner's measurement reflectivity format

Using the EtherNet/IP SendRRData command send an explicit TCP/IP messages to configure the

reflectivity measurement format of the scanner using the following parameters.

o Service code 16 (0x10) // Set Single Attribute

o Object class 115 (0x73) // Vendor Specific Object Class

o Instance 1 (0x01) // Vendor Specific Instance

o Attribute 5 (0x05) // Reflectivity Measurement Reporting Format

o UINT16 Data // Data = 1 , REFLECTIVITY_MEASURE_TOT_ENCODED (default

value)

PC → SCANNER

Datagram Structure See section 9.4.11 Table 20: SendRRData Command Request
See section 9.4.14 Table 23: Set Single Attribute Service Code Request CPF Data

Size 50 bytes

Parameters to
update

EIP_UINT16 length = 0x001A (Length of command specific data)

EIP_UINT32 session_handle_id = 0x00000005
EIP_UINT8 service_code = 0x10 (Set_Single_Attribute)
EIP_UINT8 class_code = 0x73 (Vendor Object, Measurement Configuration)
EIP_UINT8 instance_id = 0x01 (Vendor Object Instance)
EIP_UINT8 attribute_id = 0x05 (Reflectivity Format Attribute Number)
EIP_UINT16 attribute data = 0x0001 (Reflectivity Format Setting)

Hexadecimal 6F 00 1A 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 02 00 00 00 00 00 B2 00 0A 00 10 03 20 73 24 01
30 05 01 00

SCANNER → PC

Datagram Structure See section 9.4.15 Table 24: SendRRData Command Reply to a Set Single Attribute Request

Size 44 bytes

SendRRData Response Example

Updated
Parameter(s)
returned

EIP_UINT16 length = 0x0014 (Length of command specific data)
EIP_UINT16 data_length = 0x0004 (4 bytes of service response data)
EIP_UINT8 service_response = 0x90 (Set_Single_Attribute | 0x80)
EIP_UINT8 service_status = 0x00 (Success)

Hexadecimal 6F 00 14 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 02 00 00 00 00 00 B2 00 04 00 90 00 00 00

64

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Application Examples

10.1.2.8 Configure the scanner's measurement beam selection mask

Using the EtherNet/IP SendRRData command send an explicit TCP/IP messages to configure the

beam selection mask of the scanner using the following parameters.

o Service code 16 (0x10) // Set Single Attribute

o Object class 115 (0x73) // Vendor Specific Object Class

o Instance 1 (0x01) // Vendor Specific Instance

o Attribute 12 (0x0C) // Beam Selection Mask

o UINT16 Data [44] // Data required can be selected using the following algorithms.

// define beam selection mask.

 memset((uint8 *)&BeamReportMask, ZERO, sizeof(BeamReportMask));

 SetupBeamSelectionMask(0, 45, BeamReportMask);

 SetupBeamSelectionMask(225, 270, BeamReportMask);

/**

** Function/Task: SetupBeamSelectionMask

** Purpose: Select the beams used within the measurement data reports.

** Arguments: float startAngle (‐0.4 to 270.4 degrees)

** float endAngle (‐0.4 to 270.4 degrees)

** uint16 *BeamSelectionData (pointer to Beam Selection Array)

** Return: bool TRUE/FALSE (PASS/FAIL)

**/

bool SetupBeamSelectionMask(float startAngle, float endAngle, uint16 *BeamSelectionData)

{

 int16 i;

 int16 startBeam = ((startAngle * 10) / 4); // startAngle/0.4 degress per beam.

 int16 endBeam = (((endAngle * 10) + 2) / 4); // endAngle/0.4 degress per beam.

 uint32 beamSelectionMask = 0x0001;

 uint32 beamSelctionCtr = 0;

 if ((startBeam < ‐1) || (startBeam > 677) || (endBeam < ‐1) || (endBeam > 677) || (startBeam > endBeam)) {

 return(FALSE);

 }

 // setup initial mask variables.

 for (i = ‐1; i < startBeam; i++){

 if (beamSelectionMask == 0x8000) {

 beamSelctionCtr++;

 beamSelectionMask = 0x0001;

 } else {

 beamSelectionMask = beamSelectionMask << 1;

 } // end if else

 } // end for

 // setup required measurement beams.

 for (i = startBeam; i < endBeam; i++) {

 BeamSelectionData[beamSelctionCtr] |= beamSelectionMask;

 if (beamSelectionMask == 0x8000) {

 beamSelctionCtr++;

 beamSelectionMask = 0x0001;

 } else {

 beamSelectionMask = beamSelectionMask << 1;

 } // end if else

 } // end for

 return (TRUE);

} // end SetupBeamSelectionMask()

65
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Application Examples

E

10.1.2.9 Read the scanners measurement data using explicit TCP/IP messages

1.In order to read the scanner's measurement data, use the SendRRData command to send an explicit

TCP/IP message to read the entire assembly object of interest. When requesting data from input

assemblies 102 and 103 the scanner will reply with data that is not synchronous with the scan

period. To read scanner data that is synchronous with the scan period the vendor specific

assemblies 114, 116 and 117 must be used. For vendor specific object data requests the scanner

will reply with the required data after the end of the current scan cycle and before the next scan

cycle. Service code 14 (0x0E, Get Single Attribute) should be used in a TCP request/reply explicit

message using the following parameters.

For standard input assemblies 102 & 103 use:

Service code 14 (0x0E) // Get Single Attribute

Object class 0x04 (0x04) // Assembly Object Class

Instance number // Assembly Number, for example 102 (0x66).

Attribute 03 (0x03) // Assembly Data

For vendor specific objects 114, 116 & 117 use:

Service code 14 (0x0E) // Get Single Attribute

Object class number // Vendor Specific Object, for example 114 (0x72).

Instance 1 (0x01) // Instance Number

Attribute 03 (0x03) // Assembly Data

PC → SCANNER

Datagram Structure See section 9.4.11 Table 20: SendRRData Command Request
See section 9.4.14 Table 23: Set Single Attribute Service Code Request CPF Data

Size 136 bytes

Parameters to update EIP_UINT16 length = 0x0070 (Length of command specific data)

EIP_UINT32 session_handle_id = 0x00000005
EIP_UINT8 service_code = 0x10 (Set_Single_Attribute)
EIP_UINT8 class_code = 0x73 (Vendor Object, Measurement Configuration)
EIP_UINT8 instance_id = 0x01 (Vendor Object Instance)
EIP_UINT8 attribute_id = 0x0C (Beam Selection Mask Attribute Number)
EIP_UINT16 attribute data[44] = 88 bytes (Beam Selection Mask Setting)

Hexadecimal 6F 00 70 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 02 00 00 00 00 00 B2 00 60 00 10 03 20 73 24 01 30 0C
FE FF FF FF FF FF FF FF FF FF FF FF FF FF 03 00 00 00 00 00 00 00 00
00 00
00 F8 FF
FF FF FF FF FF FF FF FF FF FF FF FF 0F 00 00 00

SCANNER → PC

Datagram Structure See section 9.4.15 Table 24: SendRRData Command Reply to a Set Single Attribute Request

Size 44 bytes

SendRRData Response Example

Updated
Parameter(s)
returned

EIP_UINT16 length = 0x0014 (Length of command specific data)

EIP_UINT16 data_length = 0x0004 (4 bytes of service response data)
EIP_UINT8 service_response = 0x90 (Set_Single_Attribute | 0x80)
EIP_UINT8 service_status = 0x00 (Success)

Hexadecimal 6F 00 14 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 02 00 00 00 00 00 B2 00 04 00 90 00 00 00

66

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Application Examples

2.To maintain a constant connection with the scanner, the application code should resend the TCP/IP

request with a minimum delay of 2 milliseconds after receiving data from the scanner. The scanner

will reply with new data at the end of the next scan cycle.

3.To terminate the connection with the scanner, the application code should first send the UnRegister Scanner

Session command as described in section 9.4.8 and then close the appropriate TCP/IP socket.

PC → SCANNER

Datagram
Structure

See section 9.4.11 Table 20: SendRRData Command Request
See section 9.4.12 Table 21: Get Single Attribute Service Code Request CPF Data

Size 48 bytes

Parameters to
update

EIP_UINT16 length = 0x0018 (Length of command specific data)

EIP_UINT32 session_handle_id = 0x00000005
EIP_UINT8 service_code = 0x0E (Get_Single_Attribute)
EIP_UINT8 class_code = 0x72 (Vendor Object 114, Range Measurement Data)
EIP_UINT8 instance_id = 0x01 (Vendor Object Instance)
EIP_UINT8 attribute_id = 0x03 (Assembly Object Data)

Hexadecimal 6F 00 18 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 02 00 00 00 00 00 B2 00 08 00 0E 03 20 72 24 01 30
03

SCANNER → PC

Datagram Structure See section 9.4.13 Table 22: SendRRData Command Reply to a Get Single Attribute Request

Size 140 bytes (For this example there are 20 beams in measurement report)

SendRRData Response Example

Updated
Parameter(s)
returned

EIP_UINT16 length = 0x0074 (Length of command specific data)

EIP_UINT16 data_length = 0x0064 (100 bytes = 4 bytes of service response + 56 bytes of the
measurement report header + 40 bytes of the beam data)
EIP_UINT8 service_response = 0x8E (Get_Single_Attribute| 0x80)
EIP_UINT8 service_status = 0x00 (Success)
EIP_UINT8 Data_Array[data_length - 4];
See section 4.8 Table 8: Common Measurement Report Header Format (56 bytes)

Note: Number of beams = 0x0014 (20)
See section 4.9 Table 9: Input Assembly 102 and Vendor Specific Object 114 (max. 1410 bytes)

Hexadecimal 6F 00 74 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 02 00 00 00 00 00 B2 00 64 00 8E 00 00 00 D3 D7 02
00 38 98 00 00 28 7E C4 B0 21 A9 00 00 03 00 07 00 00 00 00 00 00 00
01 00 00 00 02 01 88 33 AE 31 00 00 00 00 00 00 00 00 00 00 00 00 01
00 01 00 00 00 14 00 4D 08 3E 08 4E 08 3D 08 4E 08 53 08 4E 08 3D 08
5B 08 53 08 5B 08 53 08 5B 08 61 08 65 08 61 08 65 08 63 08 65 08 6D
08

PC → SCANNER

Datagram Structure See section 9.4.9 Table 19: Un-Register Session Command Request

Size 24 bytes

Parameters to update EIP_UINT32 session_handle_id = 0x00000005

Hexadecimal 66 00 00 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

SCANNER → PC

Note There will be no reply to this command.

The scanner will close the TCP/IP socket connection when it receives this command.

Size 0 bytes

Un-Register Session Response Example

Hexadecimal None

67
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Application Examples

E

10.2 Runtime Monitoring using an Implicit UDP I/O Connection

10.2.1 Network Configuration

Configure the scanners IP Address, Subnet Mask and Default Gateway using the OS32C

Configuration Tool (See OS32C User Manual).

10.2.2 Computer/PLC Configuration & Process Control Example

Using the I/O message command information provided in the scanners electronic data sheet, configure

the Computer or PLC device to access the scanners I/O messages in order to monitor the

measurement data. In this example, configure the scanner's run-time monitoring attributes to monitor

two sector locations within the 0 to 270° scanning field. The following information outlines the

configuration and request/reply commands needed in this example.

10.2.2.1 Configure the scanner's protection and warning zones

1. Using the scanners configuration tool, configure the scanner for a limited protection zone range of

500 mm.

2. Using the configuration tool, configure the scanners Warning Zone #1 for detection zone range of

1000 mm in sector #1 (0 to 45°).

3. Using configuration tool, configure the scanners Warning Zone #2 for detection zone range of 1500

mm for sector #2 (225 to 270°).

10.2.2.2 Configure the software driver communication ports

•Initialize a UDP/IP port 44818 for performing the discovery process on all connected scanners. The

List identity command can be used to determine which devices are OS32C scanners.

•Initialize a TCP/IP port 44818 for receiving and transmitting all explicit messages used to establish

connections with the OS32C scanners.

•Initialize a UDP I/O connection for the required application. Initialize the UDP/IP port 2222 for

receiving and transmitting all I/O connected messages.

10.2.2.3 Establishing a TCP connection with a scanner using a known IP address

Using the appropriate socket programming language establish a TCP/IP connection to the scanner

using the local computer IP address and the target scanner IP address.

10.2.2.4 Register a communication session with the scanner

See section 10.1.2.5 Register a communication session with the scanner described in TCP/IP

example.

10.2.2.5 Configure the scanner's measurement range format

See section 10.1.2.6 Configure the scanner's measurement range format described in TCP/IP

example.

10.2.2.6 Configure the scanner's measurement reflectivity format

See section 10.1.2.7 Configure the scanner's measurement reflectivity format described in TCP/IP

example.

10.2.2.7 Configure the scanner's measurement beam selection

See section 10.1.2.8 Configure the scanner's measurement beam selection mask described in TCP/IP

example.

68

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Application Examples

10.2.2.8 Create a Large Forward Open I/O Connection between the originator (PC) and the scanner

Using the SendRRData command described in section 9.4.10 and the Large Forward Open Request

described in section 9.4.16 create an I/O connection with the scanner to stream Assembly Object 102

at an interval of 80 milliseconds with a timeout period of 800 milliseconds.

PC → SCANNER

Datagram
Structure

See section 9.4.11 Table 20: SendRRData Command Request
See section 9.4.16 Table 25: Large Forward Open Request Encapsulation Packet

Size 94 bytes

Parameters to
update

EIP_UINT16 length = 0x0046 (Length of command specific data)

EIP_UINT32 session_handle_id = 0x00000005
EIP_UINT32 interface_handle_id = 0x00000000
EIP_UINT16 timeout = 0x0050 (80 milliseconds)
EIP_UINT16 data_item_length = 0x0036 (54 bytes)
EIP_UINT8 service request = 0x5B (Large Forward Open)
EIP_UINT16 timeout_ticks = 0x0050 (80 milliseconds)
EIP_UINT32 o_to_t_connection_id = 0x00020003 (User selectable)
EIP_UINT32 t_to_o_connection_id = 0x00020004 (User selectable)
EIP_UINT16 connection_serial_number = 0x6789 (User selectable)
EIP_UINT16 originator_vendor_id = 0x0195 (405, ORT)
EIP_UINT32 originator_serial_number = 0x00004321 (User selectable)
EIP_UINT32 o_to_t_rpi = 0x00177FA0 (originator to target repeat packet interval)
EIP_UINT32 o_to_t_connection_parameters = 0x48000000 + 6E (output assembly size + 6)
EIP_UINT32 t_to_o_rpi = 0x00013070 (target to originator repeat packet interval)
EIP_UINT32 t_to_o_connection_parameters = 0x4A000000 + 0x0584 (input assembly size + 2)
EIP_UINT8 output_assembly_number = 0x71 (Output Assembly 113 used as trigger)
EIP_UINT8 input_assembly_number = 0x66 (Input Assembly 102)

Hexadecimal 6F 00 46 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 50 00 02 00 00 00 00 00 B2 00 36 00 5B 02 20 06 24 01 06
50 03 00 02 00 04 00 02 00 89 67 95 01 21 43 00 00 00 00 00 00 A0 7F
17 00 6E 00 00 48 70 30 01 00 84 05 00 4A 01 04 20 04 24 01 2C 71 2C
66

SCANNER → PC

Datagram
Structure

See section 9.4.17 Table 26: SendRRData Command Reply to a Large Forward Open Request

Size 110 bytes

SendRRData Response to Large Forward Open Example

Updated
Parameter(s)
returned

EIP_UINT16 length = 0x0056 (Length of command specific data)

EIP_UINT32 session_handle_id = 0x00000005
EIP_UINT16 data_item_length = 0x001E (30 bytes)
EIP_UINT8 service_response = 0xDB (Large Forward Open | 0x80)
EIP_UINT32 o_to_t_connection_id = 0x780C0002 (id selected by scanner)
EIP_UINT32 t_to_o_connection_id = 0x00020004 (id accepted by scanner)
EIP_UINT16 connection_serial_number = 0x6789
EIP_UINT16 originator_vendor_id = 0x0195 (405, ORT)
EIP_UINT32 originator_serial_number = 0x00004321
EIP_UINT32 o_to_t_rpi = 0x001781D0 (originator to target actual packet interval)
EIP_UINT32 t_to_o_rpi = 0x00025CD8 (target to originator actual packet interval)
EIP_UINT8 application_reply_size = 0x00 (Number of 16-bit words)

EIP_UINT8 reserved = 0x00
Note: remaining data not used.

Hexadecimal 6F 00 56 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 04 00 00 00 00 00 B2 00 1E 00 DB 00 00 00 02 00 0C
78 04 00 02 00 89 67 95 01 21 43 00 00 D0 81 17 00 D8 5C 02 00 00 00
00 80 10 00 00 02 08 AE C0 A8 01 01 00 00 00 00 00 00 00 00 01 80 10
00 00 02 08 AE C0 A8 01 07 00 00 00 00 00 00 00 00

69
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Application Examples

E

10.2.2.9 Keep the I/O Connection Alive between the originator (PC) and the scanner

Using the UDP I/O Output Assembly send a trigger to keep the I/O connection alive and updated with

new data if needed. The keep-alive command should be sent on the UDP I/O port at an interval less

than the previously defined timeout period, 800 milliseconds in this example.

PC → SCANNER

Datagram
Structure

UDP I/O Connection Alive

Size 128 bytes

Parameters to
update

EIP_UINT16 item_count = 0x0002

EIP_UINT16 address_item_type = 0x8002
EIP_UINT16 address_item_length = 0x0008
EIP_UINT32 o_to_t_connection_id = 0x780C0002 (selected by scanner)
EIP_UINT32 o_to_t_sequence_id = 0x00000001 (selected by originator)
EIP_UINT16 data_item_type = 0x00B1
EIP_UINT16 data_item_length = 0x006E (output assembly size + 6)
EIP_UINT16 o_to_t_16bit_sequence_# = 0x0001 (selected by originator)
EIP_UINT32 header_trigger = 0x00000003
EIP_UINT8 DataArray [104] = Output Assembly 113 data.
Note:

1) o_to_t_sequence_# must be incremented by originating application.
2) Only 20 measurement beams were selected in this example.

Hexadecimal 02 00 02 80 08 00 02 00 0C 78 01 00 00 00 B1 00 6E 00 01 00 03 00 00
00 01 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00
00 00 00 00 00 00 00 00 00 00 00 00 FF FF 0F 00 00 00 00 00 00 00 00
00
00 00 00 00 00 00 00 00 00 00 00 00 00

SCANNER → PC

Datagram Structure UDP I/O Connection Alive

Size 0 bytes

UDP I/O Connection Alive Response Example

Hexadecimal None, there is no response to this command but I/O data will continue to be streamed on this connection.

70

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Application Examples

10.2.2.10 I/O Connection Assembly Data sent from the target (OS32C) and the originator (PC)

Using the UDP I/O Output Assembly send a trigger to keep the I/O connection alive and updated with

new data if needed. The keep-alive command should be sent on the UDP I/O port at an interval less

than the previously defined timeout period, 800 milliseconds in this example.

SCANNER → PC

Datagram
Structure

UDP I/O Connection Stream

Size 116 bytes

Parameters to
update

EIP_UINT16 item_count = 0x0002

EIP_UINT16 address_item_type = 0x8002
EIP_UINT16 address_item_length = 0x0008
EIP_UINT32 t_to_o_connection_id = 0x00020004 (selected by scanner)
EIP_UINT32 t_to_o_sequence_id = 0x00000015 (selected by scanner)
EIP_UINT16 data_item_type = 0x00B1
EIP_UINT16 data_item_length = 0x0062 (input assembly size + 2)
EIP_UINT16 t_to_o_16bit_sequence_# = 0x00A1 (selected by scanner)
EIP_UINT8 DataArray [data_item_length - 2] = Input Assembly Data (56 bytes of measurement report
header + 40 bytes of beam data)
Note:

1) t_to_o_sequence_id will be incremented by the scanner.
2) Only 20 (0x0014) measurement beams were selected in this example.

Hexadecimal 02 00 02 80 08 00 04 00 02 00 15 00 00 00 B1 00 62 00 A1 00 76 53 04
00 64 96 00 00 18 BE 97 8A 19 A7 00 00 03 00 07 00 00 00 00 00 00 00
01 00 00 00 08 07 88 33 AE 31 00 00 00 00 00 00 00 00 00 00 00 00 01
00 02 00 00 00 14 00 52 08 42 08 52 08 40 08 52 08 40 08 53 08 58 08
52 08 40 08 58 08 58 08 58 08 5E 08 67 08 5D 08 67 08 5E 08 5E 08 6F
08

71
OS32C with EtherNet/IP & Measurement Data Addendum

Introduction

Application Examples

E

10.2.2.11 Terminate a Forward Open I/O Connection between the originator (PC) and the scanner

Using the SendRRData command described in section 9.4.10 and the Forward Close Request

described in section 9.4.19 terminate the I/O connection with the scanner. The command is sent before

un-registering a scanner session and closing the TCP socket connection.

PC → SCANNER

Datagram
Structure

See section 9.4.11 Table 20: SendRRData Command Request
See section 9.4.19 Table 28: Forward Close Request Encapsulation Packet

Size 62 bytes

Parameters to
update

EIP_UINT16 length = 0x0026 (Length of command specific data)

EIP_UINT32 session_handle_id = 0x00000005
EIP_UINT32 interface_handle_id = 0x00000000
EIP_UINT16 timeout = 0x0028 (40 milliseconds)
EIP_UINT16 data_item_length = 0x0016 (22 bytes)
EIP_UINT8 service request = 0x4E (Forward Close)
EIP_UINT8 timeout_ticks = 0x28 (40 milliseconds)
EIP_UINT16 connection_serial_number = 0x6789 (User selected)
EIP_UINT16 originator_vendor_id = 0x0195 (405, ORT)

EIP_UINT32 originator_serial_number = 0x00004321 (User selected)

Hexadecimal 6F 00 26 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 28 00 02 00 00 00 00 00 B2 00 16 00 4E 02 20 06 24 01 06
28 65 87 95 01 21 43 00 00 02 00 20 02 24 01

SCANNER → PC

Datagram
Structure

See section 9.4.20 Table 29: SendRRData Command Reply to a Forward Close Request

Size 54 bytes

SendRRData Response to Forward Close Example

Updated
Parameter(s)
returned

EIP_UINT16 length = 0x001E (Length of command specific data)

EIP_UINT32 session_handle_id = 0x00000005
EIP_UINT16 data_item_length = 0x000E (14 bytes)
EIP_UINT8 service_response = 0xCE (Forward Close | 0x80)
EIP_UINT16 connection_serial_number = 0x6789
EIP_UINT16 originator_vendor_id = 0x0195 (405, ORT)
EIP_UINT32 originator_serial_number = 0x00004321
EIP_UINT8 application_reply_size = 0x00 (Number of 16-bit words)
EIP_UINT8 reserved = 0x00

Hexadecimal 6F 00 1E 00 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 02 00 00 00 00 00 B2 00 0E 00 CE 00 00 00 65 87 95
01 21 43 00 00 00 00

72

Introduction

OS32C with EtherNet/IP & Measurement Data Addendum

Revision History

11.Revision History
A revision code appears as a suffix to the catalog number at the bottom of the front and back covers of this
document.

Revision code Date Revised contents

01 January 2013 First edition

02 February 2013 Minor corrections

03 April 2013
- minor corrections and updates
- added figure numbers

04 November 2013

- Added Input Assemblies 104 to 111 with reduced assembly data sizes as well as Output
Assemblies 114 to 120 to support the interfacing with CJ2, NJ and other PLC's."

- Added Range Reporting Formats to support compressed Range & Reflectivity data and
alternative encoded protection and warning zone bits.

- Added User Tag option for Input Assemblies 104 to 111 to allow users to insert
predefined data in the first and last positions of the assembly data.

- Minor corrections and updates

05 April 2014

- Add active warning zone set to Input Assemblies 100 and 101 as well as Output
Assemblies 113, 114, and 115.

- Add active warning zone set selection
- Minor corrections and updates

06 February 2020
- Added Terms and Conditions Agreement.
- Added description on EtherNet/IP to 1. Introduction.

07 May 2020
- Remove OSTI from front cover
- Updated Revision no. to -07

Revision code

Cat. No. Z336-E1-06

